Computer science trouble lies in education, not jobs, professor says

Feb 19, 2007

Contrary to tales of doom about the decline of America's computer science industry, the biggest problem facing computing today is not a lack of jobs but a shortage of qualified workers to fill those jobs, says Stanford Professor Eric Roberts, who spoke about the crisis in computer science education at the annual meeting of the American Association for the Advancement of Science (AAAS) on Feb. 19 in San Francisco.

"There are more jobs in the U.S. today than there were at the height of the dot-com boom," says Roberts, the John A. and Cynthia Fry Gunn University Fellow in Undergraduate Education, whose talk is part of a panel titled "New Approaches to the Development of the U.S. Computing Work Force. "We're training far fewer people than we need to fill the available positions."

The problem not only has serious implications for the computing industry, but it also can severely hinder advances in other areas of science that have come to rely more and more on computing technology.

"Computational science is where the breakthroughs are happening," Roberts says. The computational algorithms that model the movements of a robot's arm, for example, also can help determine if a particular drug molecule can bend to fit, like a puzzle piece, into a human protein in a way that will block diseases from developing.

Despite the abundance of job opportunities, enrollment rates in computer science classes dropped to less than half of what they were at their peak in 2000, according to a study published by the Higher Education Research Institute at the University of California-Los Angeles in 2005.

"The field seems to have lost its luster," says Roberts.

Waning interest, according to Roberts, largely has resulted from the prevalent but mistaken belief that computer science job opportunities have declined since the dot-com crash. Recent media focus on offshoring has heightened the perception that the U.S. computing industry is declining, raising the concern that jobs are rapidly moving to China and India. Although demand for talent has led companies to seek new employees abroad, more new jobs are created each year in the U.S. high-tech industry than are moved overseas, says Roberts.

The unfounded fear of disappearing job opportunities is having real effects on the computing industry. "The real problem is that fear of offshoring is keeping people out of the field," Roberts says. "If you believe that there will be no computer jobs in the U.S., that will become true. It's a self-fulfilling prophecy."

As the United States trains fewer computer scientists, companies hungry for qualified employees have intensified their search for talent abroad. While the cost of hiring remains a factor, talent-driven innovation can prove even more valuable economically. "Talent is what drives this industry," Roberts says. "If they can find talent, they can turn it into dollars."

And talent will be found where education fosters it, says Roberts, who is co-chair of the education board of the Association of Computing Machinery (ACM), the world's largest educational and scientific computing society.

The lack of adequate computer science education in high schools is another major factor contributing to the dire state of computer science enrollment in colleges. The principle driver, Roberts says, is economics. Lured by high salaries in the corporate world-salaries that will grow even higher as the gap widens between job opportunities and worker availability-few college graduates with computer science degrees choose to pursue the path of teaching.

"It makes it really hard to build more computer scientists if you can't hire teachers," Roberts says.

Without a push from educators, high school computer science programs remain weak. "Almost no place is looking at computer science as on par with learning physics or mathematics, which it should be," says Roberts. Consequently, few students leave high school looking at computer science as a serious career option, he says.

Universities also struggle with attracting enough computer science educators. "In the '80s boom, there was one year in which there was one applicant for every seven open [teaching] positions, which means that six of the positions just did not get filled," says Roberts. Today, there are more applicants than openings, but the ratio-hovering at around two to one-still stands in stark contrast to that in most humanities departments, where hundreds of applicants compete for one faculty job opening.

"I used to argue that Ph.D.s in computer science probably lowered your salary, because they opened lower paying jobs [in academia]," Roberts half jokes. "There's an economic incentive not to teach but to go off and make your killing in the field."

'Sputnik-level push'

Where the economy creates a problem, the government must find a solution, Roberts says. "We need to make sure there's a national effort that's supported by government, industry and professional societies, including the AAAS, to encourage people to study computing."

A cohesive, nationwide effort to improve computer science education would include increasing funding and establishing requirements for computer science curricula in high schools.

Two other speakers on the panel, John King of the University of Michigan at Ann Arbor and Jan Cuny of the National Science Foundation, will further address strategies for strengthening the U.S. computing work force.

While vulnerable to the economic forces hindering computer science education, the computing industry is also a key player in economic growth, Roberts says.

"I think what the U.S. government should do is to mount a Sputnik-level push to get more people involved in those areas of technology which are obviously going to be the leading edge of the economy," Roberts says. "There's a lot of worry about whether the U.S. is maintaining its competitive edge."

At bottom lies the question of untapped human potential. "We have huge resources in terms of our intellectual capital. Why aren't we exploiting them more?" Roberts asks. "We were the unquestioned leader in computing. We can't just give that up because nobody is interested."

Source: Stanford University

Explore further: Computer-assisted accelerator design

add to favorites email to friend print save as pdf

Related Stories

Internet TV case: US justices skeptical, concerned

3 hours ago

Grappling with fast-changing technology, U.S. Supreme Court justices debated Tuesday whether they can protect the copyrights of TV broadcasters to the shows they send out without strangling innovations in ...

Abundance of Chesapeake Bay's underwater grasses increases

17 minutes ago

An annual survey led by researchers at William & Mary's Virginia Institute of Marine Science shows that the abundance of underwater grasses in Chesapeake Bay increased 24 percent between 2012 and 2013, reversing ...

NASA's space station Robonaut finally getting legs

Apr 19, 2014

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Recommended for you

Computer-assisted accelerator design

Apr 22, 2014

Stephen Brooks uses his own custom software tool to fire electron beams into a virtual model of proposed accelerator designs for eRHIC. The goal: Keep the cost down and be sure the beams will circulate in ...

First steps towards "Experimental Literature 2.0"

Apr 21, 2014

As part of a student's thesis, the Laboratory of Digital Humanities at EPFL has developed an application that aims at rearranging literary works by changing their chapter order. "The human simulation" a saga ...

User comments : 0

More news stories

SK Hynix posts Q1 surge in net profit

South Korea's SK Hynix Inc said Thursday its first-quarter net profit surged nearly 350 percent from the previous year on a spike in sales of PC memory chips.

FCC to propose pay-for-priority Internet standards

The Federal Communications Commission is set to propose new open Internet rules that would allow content companies to pay for faster delivery over the so-called "last mile" connection to people's homes.

Brazil enacts Internet 'Bill of Rights'

Brazil's president signed into law on Wednesday a "Bill of Rights" for the digital age that aims to protect online privacy and promote the Internet as a public utility by barring telecommunications companies ...

Is nuclear power the only way to avoid geoengineering?

"I think one can argue that if we were to follow a strong nuclear energy pathway—as well as doing everything else that we can—then we can solve the climate problem without doing geoengineering." So says Tom Wigley, one ...

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

FDA proposes first regulations for e-cigarettes

The federal government wants to prohibit sales of electronic cigarettes to minors and require approval for new products and health warning labels under regulations being proposed by the Food and Drug Administration.