The insides of clouds may be the key to climate change

Feb 17, 2007

As climate change scientists develop ever more sophisticated climate models to project an expected path of temperature change, it is becoming increasingly important to include the effects of aerosols on clouds, according to Joyce E. Penner, a leading atmospheric scientist at the University of Michigan.

That's because aerosols, fine particles such as smoke and dust that form droplets in clouds and change cloud thickness, affect how much sun is able to pass through the cloud to Earth, as well as the amount of moisture that's returned to Earth. Both moisture and sunlight play significant roles in climate change.

"Think of it as having two clouds--one made of cotton and the other of Styrofoam," Penner said. "More sunlight and moisture will pass through a cloud of cotton as opposed to the denser cloud of Styrofoam. This difference is becoming more critical in terms of modeling future changes in the climate as we continue to produce more and more aerosols that form thicker and thicker clouds." Penner will present a talk on this topic, "Aerosol-Cloud Interactions and Climate Projections" during panel at a meeting of the American Association for the Advancement of Science in San Francisco on Feb. 17.

By comparing the observed temperature change record since 1850 with two different climate models, one that has low climate sensitivity and small amounts of aerosols and one that has high climate sensitivity and high amounts of aerosols, Penner's group showed that both models follow almost identical predictive paths in the past, but diverge significantly when predicting the temperature in the future

Penner's presentation also looks at the predictive capability of three climate models, a US NCAR-Oslo model, a French model and a Japanese model, and shows that differences are large, especially when the models predict both aerosols and their cloud effects in the assumed level of aerosols at the time, significantly changes the results. The differences are large partly because these models do not have high enough resolution to reproduce observations.

"We know that aerosol effects on clouds need to be included in climate models," Penner said, "but we need more research to reach optimum predictive properties for climate models."

Source: University of Michigan

Explore further: Massive geographic change may have triggered explosion of animal life

add to favorites email to friend print save as pdf

Related Stories

Study of aerosols stands to improve climate models

Aug 04, 2014

(Phys.org) —Aerosols, tiny particles in the atmosphere, play a significant role in Earth's climate, scattering and absorbing incoming sunlight and affecting the formation and properties of clouds. Currently, ...

NASA ocean data shows 'climate dance' of plankton

Sep 30, 2014

The greens and blues of the ocean color from NASA satellite data have provided new insights into how climate and ecosystem processes affect the growth cycles of phytoplankton—microscopic aquatic plants ...

New technology tracks tiniest pollutants in real time

Sep 26, 2014

Researchers may soon have a better idea of how tiny particles of pollution are formed in the atmosphere. These particles, called aerosols, or particulate matter (PM), are hazardous to human health and contribute ...

First eyewitness accounts of mystery volcanic eruption

Sep 18, 2014

New light has been shed on one of the biggest volcanic eruptions in the last 500 years—the so-called 'Unknown eruption'—thanks to an unusual collaboration between a historian and a team of earth scientists at the University ...

Recommended for you

NASA sees remnants of Nilofar go to cyclone graveyard

14 hours ago

Wind shear has caused the demise of former Tropical Cyclone Nilofar in the northern Arabian Sea. NASA's Aqua satellite passed over Nilofar on Oct. 31 and captured an image that shows strong wind shear has ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.