Disorder May Be in Order for ‘Spintronic’ Devices

Feb 15, 2007
Disorder May Be in Order for ‘Spintronic’ Devices
JILA research shows that electrons tend to hold consistent ´spins´ longer in low-energy, disordered areas of a semiconductor (representing by the valleys of the cartoon), while spinning more erratically in higher-energy areas of a perfect crystal where movement is more fluid (represented by the mountains and air). Credit: J. Fal/JILA

Physicists at JILA are using ultrashort pulses of laser light to reveal precisely why some electrons, like ballet dancers, hold their spin positions better than others—work that may help improve spintronic devices, which exploit the magnetism or “spin” of electrons in addition to or instead of their charge. One thing spinning electrons like, it turns out, is some disorder.

JILA is a joint venture of the National Institute of Standards and Technology and the University of Colorado at Boulder.

Electrons act like tiny bar magnets whose poles can point up or down. So-called “spintronic” circuits that sense changes in electron spin already are used in very high-density data storage devices, and other spin-based devices are under study. Greater exploitation of spintronics will require spins to be stable—in this case meaning that electrons can maintain their spin states for perhaps tens of nanoseconds while also traveling microscale distances through electronic circuits or between devices.

Scientists have suspected for some time that electrons best maintain the same spin direction at a “magic” electron density. New JILA measurements, described in Nature Physics, suggest where the magic originates, revealing that electrons actually hold their spins for the longest time—three nanoseconds—when confined around defects, or disordered areas, in semiconductors.

They lose their spin alignment in just a few hundred picoseconds when flowing through perfect areas of the crystal. This finding explains the role of density: at very low density, electrons are strongly confined to different local environments, whereas at extremely high density, electrons start hitting each other and lose spin control very fast. The magic point of maximum spin memory occurs at the cross-over between these two conditions.

The JILA research is the first to characterize the so-called electronic disorder in semiconductors and connect it to the spin dynamics. Disorder may arise because, when thin films are being made, imperfections consisting of even one extra layer of a few atoms create islands where electrons act as if they were trapped in stationary molecules. The new findings present a design challenge for spintronic devices, because the conditions that best preserve memory are not conducive to optimum transport properties.

The JILA team confined electrons in “quantum wells,” and used a visible laser beam of varying intensity to systematically vary electron density in the wells. For the measurements, infrared laser pulses were applied in pairs. The first pulse excites some electrons and gives them a spin, creating a temporary magnet. The polarization of light from the second pulse, reflected off the quantum wells, is rotated by the electrons.

By measuring the magnitude of that rotation, the researchers infer how many electrons have the same spin. Then an external magnetic field is applied and the electrons rotate around the field, flipping their spins up and down as they go, and causing the reflected light’s polarization to oscillate. Based on the oscillation patterns, scientists can infer electron disorder and calculate spin retention times.

The quantum wells were provided by the University of Manchester, United Kingdom.

Citation: Z. Chen, S.G. Carter, R. Bratschitsch, P. Dawson and S.T. Cundiff. Effects of disorder on electron spin dynamics in a semiconductor quantum well. Nature Physics. Posted online Feb. 11, 2007.

Source: NIST

Explore further: Using antineutrinos to monitor nuclear reactors

add to favorites email to friend print save as pdf

Related Stories

Vest to prevent balance disorder patients falling

Apr 06, 2010

(PhysOrg.com) -- A vest being developed by scientists at the University of California, Los Angeles (UCLA) could help people with balance disorders to regain their balance. This could cut short the rehabilitation ...

Graphene origami opens up new spintronics features

Dec 19, 2013

(Phys.org) —Despite graphene's many impressive properties, its lack of a bandgap limits its use in electronic applications. In a new study, scientists have theoretically shown that a bandgap can be opened ...

Topological light: Living on the edge

Oct 21, 2013

(Phys.org) —Topology—the understanding of how things are connected—remains abstract, even with the popular example of doughnuts and coffee cups. This concept, esoteric as it appears, is also neat because ...

Recommended for you

Using antineutrinos to monitor nuclear reactors

3 hours ago

When monitoring nuclear reactors, the International Atomic Energy Agency has to rely on input given by the operators. In the future, antineutrino detectors may provide an additional option for monitoring. ...

Imaging turns a corner

7 hours ago

(Phys.org) —Scientists have developed a new microscope which enables a dramatically improved view of biological cells.

Mapping the road to quantum gravity

21 hours ago

The road uniting quantum field theory and general relativity – the two great theories of modern physics – has been impassable for 80 years. Could a tool from condensed matter physics finally help map ...

User comments : 0

More news stories

A 'quantum leap' in encryption technology

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

Bake your own droplet lens

A droplet of clear liquid can bend light, acting as a lens. Now, by exploiting this well-known phenomenon, researchers have developed a new process to create inexpensive high quality lenses that will cost ...

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...