Detecting Disease

Feb 14, 2007
Detecting Disease
True color fluorescence microscopy images of dual-function beads embedded with iron oxide and (A) 630 nm emission QDs and (B) 580 nm emission QDs. The beads are coated with an amphiphilic polymer and soluble in water. Images were taken at 60x magnification under blue light excitation. [Sathe and Nie, Development of dual-function microbeads embedded with quantum dots and iron oxide nanocrystals for biomedical applications, SPIE Photonics West, 2007, 6448-6.]

Analyzing human blood for a very low virus concentration or a sample of water for a bioterrorism agent has always been a time-consuming and difficult process. Researchers at the Georgia Institute of Technology and Emory University have developed an easier and faster method to detect these types of target molecules in liquid samples using highly porous, micron-sized, silica beads.

The researchers developed a technique to simultaneously or sequentially add optical and magnetic nanoparticles into the beads. Adding magnetic nanoparticles allows the use of a magnetic field to attract and easily remove the beads from a liquid sample.

“These nanoparticles enter the pores of the microbeads so quickly and so completely -- essentially more than 99 percent of the nanoparticles go into the pores of the beads,” explained Shuming Nie, the head researcher on the project and the Wallace H. Coulter Distinguished Chair in Biomedical Engineering and director of Emory-Georgia Tech Nanotechnology Center.

The beads are mixed in a liquid such as urine. Viruses, proteins or other biomarkers are captured on the bead surface. After the beads are removed from the liquid, optical imaging is used to determine the concentration of a specific protein or virus in the liquid sample based on the number of proteins or viruses attached to the surface of the beads.

Tushar Sathe, a graduate student in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, described the process of creating these novel beads and their clinical applications on Jan. 20 at SPIE Photonics West in San Jose, California. The work was also published in the Aug. 15 issue of Analytical Chemistry.

The technology involves embedding fluorescent quantum dots and magnetic iron oxide nanoparticles inside the beads to create dual-modality magneto-optical beads. Nie and Sathe synthesize the quantum dots in different colors by varying their size, giving the beads a unique optical signature. Having different color beads allows the researchers to detect several target molecules at the same time in the same liquid sample.

“We use the quantum dots to create a set of beads that are unique and can be distinguished from each other. It’s similar to bar-coding -- once you barcode the beads and put them in the urine or blood sample, you can remove them and decode what proteins or viruses have attached to individual beads based on their spectral signature,” explained Sathe.

The process of creating these beads is quite simple, according to Sathe. The surface of the beads contains a long-chain carbon molecule that makes the beads hydrophobic, meaning they repel water. The beads are dissolved in butanol and washed several times. Then the beads are counted and optical and magnetic nanocrystals are added to the suspension either simultaneously or sequentially.

After 15-20 minutes, the butanol is removed to get rid of any remaining nanoparticles that didn’t get incorporated into the beads and the beads are washed with ethanol. Then the beads are coated with a polymer that creates a hydrophilic surface on the beads. This allows the beads to be functionalized by adding antibodies or DNA molecules to the surface that will capture the target molecules.

These beads are dual-function -- both optical and magnetic -- but according to Sathe, more functions can be added to the beads. “Adding them is as easy as adding the nanoparticles into the solution. You just have to make sure the nanoparticle surface is hydrophobic so that it interacts with the beads,” said Sathe.

The primary biomedical applications for this new technology will be to detect cancer and neurological diseases by identifying certain molecules present in human blood or urine that indicate specific diseases, according to Nie, who is also professor of biomedical engineering, chemistry, materials science & engineering, and hematology and oncology at Emory University and the Georgia Institute of Technology.

“Some of the biomarkers for Alzheimer’s disease have very low concentrations in the blood so you need highly sensitive techniques that can find a specific molecule to diagnose this disease,” explained Nie. “Our technique could also be used to monitor therapeutic response. For example, if the viral level decreases in samples taken at later dates, then we know the drug is probably working.”

This new technology allows the researchers to analyze very low concentrations of target molecules. “Instead of analyzing a liter of sample where the concentration could be very dilute and you might not see the target molecule you’re looking for, you can let the beads capture the molecules on their surface, remove them from the liquid, and then just measure the number of molecules attached to the beads,” said Nie.

Source: Georgia Institute of Technology, by Abby Vogel

Explore further: Experts cautious over Google nanoparticle project

add to favorites email to friend print save as pdf

Related Stories

Gold nanoparticle chains confine light to the nanoscale

21 hours ago

A multidisciplinary team at the Centre d'Elaboration de Matériaux et d'Etudes Structurales (CEMES, CNRS), working in collaboration with physicists in Singapore and chemists in Bristol (UK), have shown that ...

Recommended for you

Nanosafety research: The quest for the gold standard

Oct 29, 2014

Empa toxicologist Harald Krug has lambasted his colleagues in the journal Angewandte Chemie. He evaluated several thousand studies on the risks associated with nanoparticles and discovered no end of shortc ...

New nanodevice to improve cancer treatment monitoring

Oct 27, 2014

In less than a minute, a miniature device developed at the University of Montreal can measure a patient's blood for methotrexate, a commonly used but potentially toxic cancer drug. Just as accurate and ten ...

Molecular beacons shine light on how cells 'crawl'

Oct 24, 2014

Adherent cells, the kind that form the architecture of all multi-cellular organisms, are mechanically engineered with precise forces that allow them to move around and stick to things. Proteins called integrin ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.