Building a Molecular Computer Chip

Feb 13, 2007

For Dr. Jerry Bernholc, a trip to Oak Ridge National Laboratory (ORNL) is like a suburbanite’s trek to Costco. Bulk consumption is the name of the game.

Bernholc, the Drexel Professor of Physics at North Carolina State University, spends more hours conducting research on supercomputers each year than all but a handful of U.S. scientists. Using the powerful computers – like ORNL’s -- to crunch numbers is the only way to get results for the complex calculations he uses to study molecules.

Building a Molecular Computer Chip
Bernholc´s research has shown that a benzine molecule, in blue, can act as a very fast switch in a transistor when conected to silicon leads, in red. Illustration courtesy of Dr. Jerry Bernholc.

Bernholc is trying to keep intact one of technology’s great streaks—Moore’s Law. Gordon Moore, the co-founder of semiconductor giant Intel, predicted in 1965 that the number of transistors the industry would be able to fit onto a computer chip would double every 18 months. The prediction has become a guiding principle for the semiconductor industry, which continually delivers more powerful chips. But upholding Moore’s Law for 40 years has pushed the industry to the brink of running out of space on computer chips.

“The limits of standard silicon technology are coming into play,” Bernholc says. “Beyond 2011 or 2012, the industry has some ideas for future growth, but it has no roadmap to get there.”

So Bernholc is pointing the industry in the direction of molecular technology. His computer simulations have demonstrated that many small molecules exhibit a property known as negative differential resistance. As voltage is increased, the current flowing through molecules drops, Bernholc says, meaning they can be used as switches. Previously, scientists thought negative differential resistance was limited to just a few molecules.

“Designers can focus on processing semiconductors instead of trying to arrange specific molecules, which is difficult at the nanoscale level,” he says. Bernholc also is working with a scientist from his native Poland on “spin electronics”—understanding and devising materials where the spin of electrons is used to control the flow of electricity.

ORNL, where Bernholc holds the title of Visiting Distinguished Scientist, already has one of the fastest supercomputers in the world, but is looking for a system a hundred times more powerful. Bernholc’s research might play a role in developing such a system.

“I’m looking at faster transistors, which could produce faster computers, which would then allow me to do simulations on even faster transistors,” he says with a laugh. “It could be an endless loop, but much more study is needed to understand molecular electronics before we can actually produce these transistors.”

For more information, please visit chips.ncsu.edu/~bernholc/

Source: NC State University

Explore further: X-ray powder diffraction beamline at NSLS-II takes first beam and first data

add to favorites email to friend print save as pdf

Related Stories

Form Devices team designs Point as a house sitter

5 hours ago

A Scandinavian team "with an international outlook" and good eye for electronics, software and design aims to reach success with what they characterize as "a softer take" on home security. Their device is ...

Man pleads guilty in New York cybercrime case

8 hours ago

A California man has pleaded guilty in New York City for his role marketing malware that federal authorities say infected more than a half-million computers worldwide.

NASA issues 'remastered' view of Jupiter's moon Europa

16 hours ago

(Phys.org) —Scientists have produced a new version of what is perhaps NASA's best view of Jupiter's ice-covered moon, Europa. The mosaic of color images was obtained in the late 1990s by NASA's Galileo ...

Dish restores Turner channels to lineup

17 hours ago

Turner Broadcasting channels such as Cartoon Network and CNN are back on the Dish network after being dropped from the satellite TV provider's lineup during contract talks.

Recommended for you

Particles, waves and ants

Nov 26, 2014

Animals looking for food or light waves moving through turbid media – astonishing similarities have now been found between completely different phenomena.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.