Self-assembling nanostructures of DNA -- a biotechnologist's dream

Feb 05, 2007

Wouldn't it be great if we could get computer chips to grow on trees? Or at least use the specific bonds of DNA molecules to get nanostructures to grow themselves right in the test tube? This technology could be used to build everything from tiny electronics components to machines that sequence DNA. This is shown in a dissertation from Mid Sweden University.

Building structures as tiny as a few nanometers is a major problem with today's technology. This is an important hurdle, because really tiny things can be extremely useful. Good examples are microelectronics, the smaller you can make the components on a chip, the faster you will be able to carry out calculations on it.

"The method we have developed for self-assembling blocks of DNA and gold particles is absolutely unique. The method can be used, for instance, to produce tiny nano carriers for drugs that can be emptied directly in cells on a given chemical signal," says Björn Högberg.

Björn Högberg has also taken a close look at a method for building nanostructures with the help of DNA that was invented by a a US researcher in the spring of 2006. The method is called 'DNA origami' and involves, in brief, folding or splicing together a long string of DNA with the aid of a large number of short strings ('staple DNA').

"In my dissertation I propose just how this technology could be used to construct a facility for extremely rapid DNA sequencing, which is a biotechnologist's dream," says Björn Högberg.

The title of the dissertation is "DNA-Mediated Self-Assembly of Nanostructures -- Theory and Experiments".

Source: The Swedish Research Council

Explore further: Cloaked DNA nanodevices survive pilot mission

add to favorites email to friend print save as pdf

Related Stories

Cloaked DNA nanodevices survive pilot mission

17 hours ago

It's a familiar trope in science fiction: In enemy territory, activate your cloaking device. And real-world viruses use similar tactics to make themselves invisible to the immune system. Now scientists at ...

Amino acid fingerprints revealed in new study

Apr 06, 2014

Some three billion base pairs make up the human genome—the floor plan of life. In 2003, the Human Genome Project announced the successful decryption of this code, a tour de force that continues to supply ...

NIST's simple microfluidic devices now have valves

Apr 02, 2014

Researchers at the National Institute of Standards and Technology (NIST) have added yet another innovation—miniature valves—to their ever-growing collection of inexpensive, easy-to-manufacture and highly ...

Exploring the natural enemies of insect pests

Mar 27, 2014

A method of investigating whether aphid pests have been targeted by their gruesome enemies could shed new light on how farmland organisms interact, and potentially help protect important food crops.

Recommended for you

Cloaked DNA nanodevices survive pilot mission

Apr 22, 2014

It's a familiar trope in science fiction: In enemy territory, activate your cloaking device. And real-world viruses use similar tactics to make themselves invisible to the immune system. Now scientists at ...

Innovative strategy to facilitate organ repair

Apr 18, 2014

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

Physicists create new nanoparticle for cancer therapy

Apr 16, 2014

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

User comments : 0

More news stories