Cassini images mammoth cloud engulfing Titan’s North Pole

Feb 01, 2007
Cassini images mammoth cloud engulfing Titan’s North Pole
Cassini's visual and infrared mapping spectrometer (VIMS) has imaged a huge cloud system covering the north pole of Titan. This composite image shows the cloud, imaged at a distance of 90 000 kilometers during a 29 December 2006 flyby designed to observe the limb of the moon. Cassini's visual and infrared mapping spectrometer scanned the limb, revealing this spectacular cloud system. It covers the north pole down to a latitude of 62 degrees north and at all observed longitudes. Such a cloud cover was expected, according to the atmospheric circulation models of Titan, but it had never been observed before with such details. The condensates may be the source of liquids that fill the lakes recently discovered by the radar instrument. This image was color-coded, with blue, green and red at 2 microns, 2.7, and 5 microns, respectively. Credits: NASA/JPL/University of Arizona

A giant cloud half the size of the United States has been imaged on Saturn’s moon Titan by the Cassini spacecraft. The cloud may be responsible for the material that fills the lakes discovered last year by Cassini's radar instrument.

Cloaked by winter's shadow, this cloud has now come into view as winter turns to spring. The cloud extends down to 60 degrees north latitude, is roughly 2400 kilometers in diameter and engulfs almost the entire north pole of Titan.

The new image was acquired on 29 December 2006, by Cassini's visual and infrared mapping spectrometer (VIMS). Scientific models predicted this cloud system but it had never been imaged with such details before.

"We knew this cloud had to be there but were amazed at its size and structure," said Dr. Christophe Sotin of the University of Nantes, France, a member of the visual and infrared mapping spectrometer team and distinguished visiting scientist at NASA's Jet Propulsion Laboratory, Pasadena, California. "This cloud system may be a key element in the global formation of organics and their interaction with the surface."

The same cloud system seen on 29 December 2006, was still there two weeks later during the flyby which took place on 13 January 2007, even though observing conditions were slightly less favorable than in December.

The Cassini radar team reported last year that the lakes at the north pole are partly filled and some appear to have evaporated, likely contributing to this cloud formation, which is made up of ethane, methane and other organics.

These findings reinforce the idea that methane rains down onto the surface to form lakes, and then evaporates to form clouds. Scientists compare this methane cycle to the hydrological cycle on Earth, dubbing it 'methane-ologic cycle'.

Ground-based observations show this Titan cloud system comes and goes with the seasons. A season on Titan lasts approximately seven Earth years. Based on the global circulation models, it seems that such cloud activity can last about 25 Earth years before almost vanishing for four to five years, and then appearing again for 25 years.

Scientists expect this cloud to be around for several years. As the seasons change, scientists expect a shift of these clouds and lakes from the north pole to the south pole. On Titan's south pole, scientists have seen only one kidney-shaped lake with Cassini’s imaging cameras.

"With 16 more flybys to come this year, we should have the opportunity to monitor the evolution of this cloud system over time," said Dr. Stephane Le Mouelic, working with the Cassini visual and infrared mapping spectrometer team, and also at the University of Nantes.

Source: ESA

Explore further: Estimating the magnetic field of an exoplanet

add to favorites email to friend print save as pdf

Related Stories

Astronomers thrilled by extreme storms on Uranus

Nov 12, 2014

The normally bland face of Uranus has become increasingly stormy, with enormous cloud systems so bright that for the first time ever, amateur astronomers are able to see details in the planet's hazy blue-green ...

Jets, bubbles, and bursts of light in Taurus

Nov 06, 2014

The NASA/ESA Hubble Space Telescope has snapped a striking view of a multiple star system called XZ Tauri, its neighbour HL Tauri, and several nearby young stellar objects. XZ Tauri is blowing a hot bubble ...

Cassini sees sunny seas on Titan

Oct 30, 2014

(Phys.org) —As it soared past Saturn's large moon Titan recently, NASA's Cassini spacecraft caught a glimpse of bright sunlight reflecting off hydrocarbon seas.

First light for MAVEN (w/ Video)

Oct 13, 2014

After 10-month voyage across more than 400 million miles of empty space, NASA's MAVEN spacecraft reached Mars on Sept. 21st 2014. Less than 8 hours later, the data started to flow.

Recommended for you

Estimating the magnetic field of an exoplanet

2 hours ago

Scientists developed a new method which allows to estimate the magnetic field of a distant exoplanet, i.e., a planet, which is located outside the Solar system and orbits a different star. Moreover, they ...

It's filamentary: How galaxies evolve in the cosmic web

3 hours ago

How do galaxies like our Milky Way form, and just how do they evolve? Are galaxies affected by their surrounding environment? An international team of researchers, led by astronomers at the University of ...

Study suggests black hole jets get their power from spin

6 hours ago

(Phys.org) —A team of space scientists working in Italy has found more evidence that suggests the energy needed to emit jets from supermassive black holes comes from the spin of the black hole itself. In ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.