Storage of greenhouse gasses in Siberian peat moor

Jan 29, 2007

Wet peat moorlands form a sustainable storage place for the greenhouse gas carbon dioxide but are also a source of the much stronger greenhouse gas methane. According to Dutch researcher Wiebe Borren, peat moorlands will counteract the greenhouse effect under the present climatic conditions. If the climate becomes warmer, the greenhouse effect can temporarily be enhanced. Borren investigated the carbon exchange between West-Siberian peat moorlands and the atmosphere.

The West-Siberian peatlands have been formed over the past 10,000 years during the Holocene period and cover some one million square kilometres. Carbon is formed during the development of the peatland. Plants initially take this up in the form of carbon dioxide. Subsequently part of the dead plant material is stored under water-saturated, acid-free conditions. As the peat slowly breaks down, carbon is released again in the form of methane (CH4), which just like carbon dioxide is a greenhouse gas. Up until now it was not clear how peat moorland areas influenced the greenhouse effect.

Borren calculated the changes in the atmospheric supplies of carbon dioxide and methane using a 3D-model based on exchange fluxes due to peat formation over the past 9000 years. With this model he also simulated the effects of draining peatlands on CO2 emission and on climate change. When studying the effects on climate change, Borren took into account the northwards shift in bioclimate zones in West Siberia as a result of global warming. The results revealed that from the Holocene up until now, peat moorlands have counteracted the greenhouse effect by functioning as a net storage place for greenhouse gasses; more CO2 is stored than methane released, even if the stronger greenhouse effect of methane is allowed for.

Borren developed a new calculation method to determine the significance of peat moorlands for climate change. To date, limits on greenhouse gas emissions (Kyoto protocols) have been calculated on the basis of instantaneous emissions and not the gradually changing emissions, which is the case for woods and natural peatlands. With this new method the researcher could also clearly show that non-drained peatlands will eventually be extremely important net storage areas for greenhouse gasses from the atmosphere, even in the case of global warming.

If global warming and the northward shift of bioclimate zones continue, however, then the peat moorlands will enhance the greenhouse effect says Borren. After about 250 years this effect will once again be reversed, as the increase in carbon dioxide uptake will then be greater than the increase in methane emissions. Drainage always contributes to a strengthening of the greenhouse effect. Borren therefore believes that the reclamation of peatlands will enhance global warming far more than the natural effects he describes in his thesis.

Source: NWO

Explore further: Strong quake hits east Indonesia; no tsunami threat

add to favorites email to friend print save as pdf

Related Stories

Warming leads to more run-ins with polar bears

Dec 19, 2014

Word spread quickly: a polar bear, then two, were spotted near this remote Inuit village on the shores of Hudson Bay, about 1,800 kilometers (1,120 miles) north of Montreal.

Alaska shows no signs of rising Arctic methane

Nov 17, 2014

Despite large temperature increases in Alaska in recent decades, a new analysis of NASA airborne data finds that methane is not being released from Alaskan soils into the atmosphere at unusually high rates, ...

NASA image: Fires in Papua, Indonesia and New Guinea

Sep 29, 2014

According to a NASA story from 2009, "human activities in this area of the world have contributed to the growing fire emissions issue. Palm oil is increasingly grown for use as a cooking oil and biofuel, ...

Sunlight, not microbes, key to CO2 in Arctic

Aug 21, 2014

The vast reservoir of carbon stored in Arctic permafrost is gradually being converted to carbon dioxide (CO2) after entering the freshwater system in a process thought to be controlled largely by microbial ...

Recommended for you

Strong quake hits east Indonesia; no tsunami threat

21 hours ago

A strong earthquake struck off the coast of eastern Indonesia on Sunday evening, but there were no immediate reports of injuries or damage, and authorities said there was no threat of a tsunami.

Scientists make strides in tsunami warning since 2004

Dec 19, 2014

The 2004 tsunami led to greater global cooperation and improved techniques for detecting waves that could reach faraway shores, even though scientists still cannot predict when an earthquake will strike.

Trade winds ventilate the tropical oceans

Dec 19, 2014

Long-term observations indicate that the oxygen minimum zones in the tropical oceans have expanded in recent decades. The reason is still unknown. Now scientists at the GEOMAR Helmholtz Centre for Ocean Research ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.