Book Assails Unrealistic Mathematical Models

Jan 26, 2007

Using equations to forecast the specific behavior of complex natural processes such as beach erosion and long-term nuclear waste storage creates a false sense of security, according to a new book by a retired Duke University geologist and his geologist daughter.

In a preface to "Useless Arithmetic: Why Environmental Scientists Can't Predict the Future," Orrin Pilkey and Linda Pilkey-Jarvis write that relying on such mathematical models has “done tangible damage to our society in many ways."

Among their examples, the pair charge that faulty mathematical models contributed to the collapse of a prime North American fishery. They say such models also are predicting unreachable margins of safety at a planned national U.S. high-level radioactive waste repository and have given coastal communities overly optimistic expectations about the endurance of beach nourishment projects.

"We make this point again and again: if your basic assumptions are wrong, it doesn't matter what the math does," said Pilkey, a retired professor at Duke's Nicholas School of the Environment and Earth Sciences.

"Since scientists now have computers on their desks that can do all kinds of sophisticated calculations, they have been saying 'give us enough money and we'll come up with a good model,' " he added. "And they have failed miserably. We scientists have to hang our heads in shame. We should have, long ago, admitted our weaknesses."

The authors focus their criticisms on quantitative mathematical models, which they define as those attempting to make specific predictions about natural outcomes by answering the questions "when," "where" and "how much."

In the case of the now-collapsed Grand Banks cod fishery, the authors argue that Canadian scientists used unrealistic quantitative models of total allowable catch to determine harvesting levels. "According to these models, the Grand Banks should still be full of fish," they write.

In its assessments of the unfinished Yucca Mountain high-level nuclear waste site in Nevada, the U.S. government has used a "pyramid" of hundreds of quantitative mathematical models to predict the repository's long-term behavior, according to the authors. Those flawed models, they write, predict a questionable 10,000 years of certainty that natural processes will not cause the repository to leak radiation.

"Of all the examples of quantitative models that I looked at, the worst is the U.S. Army Corps of Engineers’ modeling of the behavior of beaches," said Pilkey, who has also assailed those models in previous books on coastal development. "There is no truth in those models at all."

State and local governments use Corps models to guide engineering projects to "nourish" eroded beaches with imported sand. To receive federal funding, the government agencies must predict in advance the life span of the beach nourishment projects in order to ensure that the benefits outweigh the costs, and project supporters typically use modeling to make such predictions, the geologists write. But, they added, some of those beaches have been replenished more than 20 times since the early 1960s.

"Agencies that depend upon project approvals for their very survival (such as the U.S. Army Corps of Engineers) can and frequently do find ways to adjust models to come up with correct answers that will ensure project funding," the book adds.

While condemning quantitative modeling, the book is more supportive of qualitative models that predict only direction and magnitudes of natural phenomena while accepting the possibility of being "imprecise or wrong to some degree.” As examples of good modeling, the authors cite hurricane-tracking forecasts and global climate models.

Pilkey, the James B. Duke Professor Emeritus of Geology at the Nicholas School, began Duke’s Program for the Study of Developed Shorelines, which is now a joint program with Western Carolina University. An expert in the geology of deep ocean plains, he has also written numerous books on how ocean forces and human development jointly affect beaches.

Pilkey-Jarvis is a geologist and expert on oil spills for the state of Washington's ecology department.

Source: Duke University

Explore further: New 'Surveyman' software promises to revolutionize survey design and accuracy

add to favorites email to friend print save as pdf

Related Stories

Understanding oceanic earthquake precursors

Oct 21, 2014

Published on 14 September in Nature Geoscience, a study conducted by researchers from several institutes, including IFREMER (French Research Institute for Exploitation of the Sea), CNRS and IFSTTAR, offers the first theore ...

Building a bridge from basic botany to applied agriculture

Oct 14, 2014

One of the planet's leading questions is how to produce enough food to feed the world in an increasingly variable climate. The Food and Agriculture Organization of the United Nations predicts that food production ...

Pressing the accelerator on quantum robotics

Oct 06, 2014

Quantum computing will allow for the creation of powerful computers, but also much smarter and more creative robots than conventional ones. This was the conclusion reached by researchers from Spain and Austria, ...

At the interface of math and science

Sep 29, 2014

In popular culture, mathematics is often deemed inaccessible or esoteric. Yet in the modern world, it plays an ever more important role in our daily lives and a decisive role in the discovery and development ...

Statistical model predicts performance of hybrid rice

Aug 13, 2014

Genomic prediction, a new field of quantitative genetics, is a statistical approach to predicting the value of an economically important trait in a plant, such as yield or disease resistance. The method works ...

Recommended for you

Remains of French ship being reassembled in Texas

9 hours ago

A frigate carrying French colonists to the New World that sank in a storm off the Texas coast more than 300 years ago is being reassembled into a display that archeologists hope will let people walk over ...

User comments : 0