Scientists Manipulate Atoms on a Rough 3-D Surface

Jan 25, 2007

Ohio University nanoscientists have used a scanning tunneling microscope (STM) to manipulate individual atoms on a rough terrain. It is the first atom manipulation of its kind done on a three-dimensional surface.

Only a select group of scientists have manipulated individual atoms because the procedure requires atomic scale precision and control. Even greater precision and accuracy is required for atom manipulation on rough surfaces.

A movie of the atom extraction can be viewed online.

"This technique is very useful to produce single atoms for atomic constructions. It also helps us understand one of the most fundamental subjects, interaction between the matters,” said Saw-Wai Hla, the lead researcher and an associate professor of physics and astronomy at Ohio University. The research was published in a recent issue of Physical Review Letters.

To perform the manipulation, the researchers coat a custom-built, low-temperature STM tip with silver atoms. Some of the silver atoms are deposited by gently touching the tip to the silver surface. A three-dimensional image of the silver cluster is taken to determine ideal target zones for atom removal. Once ideal areas have been located, the silver-coated tip approaches the silver cluster — but they never make contact. Approaching the tip within less than a tenth of a nanometer of the cluster loosens the top atom. Moving the tip laterally across the surface drags the loosened atom and results in extraction.

The STM tip does not have to come in contact with the cluster because close proximity of the atoms causes reduced binding. This concept is based on theory proposed by University of Central Florida researchers led by Professor Talat Rahman.


Source: by by LIZ LEITCH, Ohio University

Explore further: Team finds electricity can be generated by dragging saltwater over graphene

add to favorites email to friend print save as pdf

Related Stories

JILA's short, flexible, reusable AFM probe

Apr 09, 2014

(Phys.org) —JILA researchers have engineered a short, flexible, reusable probe for the atomic force microscope (AFM) that enables state-of-the-art precision and stability in picoscale force measurements. ...

Using electron beams to encode data in nanocrystals

Mar 26, 2014

Ferroelectric materials have an intrinsic electrical polarization caused by a small shift in the position of some of their atoms that occurs below a critical point called the Curie temperature. This polarization ...

Could diamonds be a computer's best friend?

Mar 23, 2014

For the first time, physicists have demonstrated that information can flow through a diamond wire. In the experiment, electrons did not flow through diamond as they do in traditional electronics; rather, they ...

Making synthetic diamond crystals in a plasma reactor

Mar 21, 2014

Synthetic diamond crystals are of interest to many industrial sectors. Their unique properties make them a suitable material for numerous applications including lenses for high-energy laser optics, X-ray ...

Recommended for you

First direct observations of excitons in motion achieved

Apr 16, 2014

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton ...

User comments : 0

More news stories

Physicists create new nanoparticle for cancer therapy

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...