What Will GLAST Tell Us?

Jan 23, 2007
What Will GLAST Tell Us?
A simulated image of gamma-ray sources from dark matter annihilations in a model galaxy. Image courtesy of James E. Taylor and Arif Babul

The identity of dark matter—the mysterious stuff that makes up a quarter of the universe—continues to elude scientists, even decades after they first inferred its existence. The leading candidate that might explain the fundamental make-up of dark matter is a hypothetical particle called the weakly interacting massive particle (WIMP). Soon, with the Gamma-Ray Large Area Telescope (GLAST) built in part at SLAC and scheduled for launch in August of 2007, scientists may finally find clear evidence that dark matter is indeed made of WIMPs.

Gamma-rays—the most energetic form of light—originate from a multitude of mysterious sources, like black holes or exploding stars. But current theory suggests they can also come from WIMPs. Scientists believe WIMPs can interact with themselves, annihilating each other and releasing a flurry of secondary particles as well as gamma-rays. Using GLAST, scientists hope to find these high-energy signatures of dark matter in our galaxy. If they succeed, this discovery would help solve one of astronomy's grandest puzzles.

"With GLAST, we hope to actually see individual dark matter annihilations," said Michael Peskin, professor of theoretical physics at SLAC. Ted Baltz, a Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) researcher who also works on the GLAST project, added, "GLAST has the real possibility of making a fundamental contribution to understanding what galaxies are made of."

Even though it is much more weakly interacting than ordinary matter, dark matter is not spread out evenly through space and should form clumps in galaxies. If dark matter is in fact composed of WIMPS, this clumping would improve the chances of these particles meeting and annihilating, producing steady streams of gamma rays detectable by GLAST.

The trick will be distinguishing gamma rays generated by dark matter events from those generated by numerous other sources in the universe. To differentiate between the two, researchers have established a set of four guidelines. Theory predicts that WIMP annihilations will create gamma rays of particular wavelengths, distinct from those generated by other sources like black holes or exploding stars.

Dark matter annihilations should produce gamma rays exclusively, ruling out interactions that involve other kinds of radiation. These signals should appear to GLAST not as point sources, but as large patches in the sky—some nearly twice as big as the full moon. Finally, these streams of gamma rays would be continuous, a marked difference from the fleeting explosions of gamma-ray bursts that last only a few milliseconds to several minutes. If scientists find a signal with all these characteristics, chances are good that they have found a source of WIMP annihilation.

Along with numerous other dark-matter experiments, such as searches for WIMP collisions in underground detectors and attempts to manufacture WIMPs at the Large Hadron Collider (LHC) at CERN, many scientists believe the existence of WIMPS could be confirmed within the next few years.

"I think there's a lot of hope in this business," Baltz said. "If GLAST doesn't see anything, and the LHC doesn't see anything, a lot of people will be surprised. But, we've been wrong before."

Source: Stanford Linear Accelerator Center, by Marcus Woo

Explore further: Tiny magnetic sensor deemed attractive

add to favorites email to friend print save as pdf

Related Stories

GLAST Observatory reveals entire gamma-ray sky

Aug 26, 2008

(PhysOrg.com) -- NASA's newest space telescope is giving scientists their best look yet at the highest-energy gamma ray bursts generated by violent events in space. For Toby Burnett, a University of Washington ...

Seeing the universe through gamma-ray eyes

Jul 09, 2008

The scientists have stopped holding their breath. Three weeks after the launch of the Gamma-ray Large Area Space Telescope (GLAST), researchers from Stanford University, the Stanford Linear Accelerator Center and elsewhere ...

Looking for New Light

Jun 19, 2008

In many ways, astronomers are in the dark about asteroids. In the dark depths of the Kuiper Asteroid Belt beyond Neptune's orbit, and even in the nearby Main Belt between Jupiter and Mars, most asteroids are too small to ...

GLAST Observatory in Orbit

Jun 11, 2008

At 12:05 p.m. EDT, the Delta II rocket easily lifted the GLAST spacecraft off the launch pad, out of smoke and clouds and into a beautiful Florida sky headed for space.

Recommended for you

Tiny magnetic sensor deemed attractive

22 hours ago

Ultra-sensitive magnetic sensor technology pioneered at PML may soon be commercialized for a host of applications from detection of unexploded bombs and underground pipes to geophysical surveying and perhaps ...

Beams come knocking on the LHC's door

22 hours ago

Over the weekend, proton beams came knocking on the Large Hadron Collider's (LHC) door. Shooting from the Super Proton Synchrotron (SPS) and into the two LHC injection lines, the proton beams were stopped ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.