Nanoscale 'Egg' Kills Tumor Cells with Platinum

Jan 22, 2007

Researchers at the Hong Kong University of Science and Technology have developed a nanoscale “egg” that could safely deliver platinum, a known anticancer agent, to tumor cells. Tests with this nanoscale egg, which has a hard cobalt shell surrounding a “yolk” of platinum and iron, show that it is seven times more toxic than the anticancer agent cisplatin to cancer cells.

Reporting its work in the Journal of the American Chemical Society, a team of investigators led by Bing Xu, Ph.D., describes the methods used to make these novel nanoparticles. The researchers start by synthesizing cobalt sulfide nanoparticles, which naturally form a hollow shell structure, in the presence of nanoparticles made of iron and platinum.

Transmission electron microscopy (TEM) and x-ray spectroscopy studies of these nanoparticles indicate that the resulting structures have a porous crystalline shell of cobalt sulfide surrounding nanocrystals of iron/platinum. The pores in the outer shell are large enough for water to access the interior of the nanoparticle.

When added to cultured human tumor cells, these nanoparticles had an immediate effect on cell viability. After 72 hours, all tumor cells exposed to the nanoparticles died. Again using TEM, the investigators showed that the cobalt sulfide shell remained intact after the nanoparticles were taken up by tumor cells. By themselves, hollow cobalt sulfide nanoparticles – the egg without the yolk – were not toxic to cultured human cancer cells.

The researchers hypothesize that cells take up the nanoparticles via a process known as endocytosis. As a result of endocytosis, the nanoparticles would end up in small intracellular compartments that are acidic. Under those conditions, the iron/platinum nanocrystals would dissolve, allowing the nanoscale eggs to release platinum into the cancer cells.

This work is detailed in a paper titled, “FePt@CoS2 yolk-shell nanocrystals as a potent agent to kill HeLa cells.” This paper was published online in advance of print publication. An abstract of this paper is available at the journal’s website.

Source: National Cancer Institute

Explore further: Gold nanorods target cancer cells

add to favorites email to friend print save as pdf

Related Stories

Washington takes on Uber with its own taxi app

3 hours ago

Washington is developing a smartphone app to enable its taxis to compete head-on with Uber and other ride-sharing services, the US capital's taxi commission said Friday.

Comet 67P/Churyumov-Gerasimenko in living color

3 hours ago

Rosetta's OSIRIS team have produced a color image of Comet 67P/Churyumov-Gerasimenko as it would be seen by the human eye. As anticipated, the comet turns out to be very grey indeed, with only slight, subtle ...

EU clean air, waste laws at risk

3 hours ago

EU Commission chief Jean-Claude Juncker faces a clash with lawmakers after leaked documents Friday revealed his plans to drop laws on clean air and waste recycling.

Recommended for you

Gold nanorods target cancer cells

6 hours ago

Using tiny gold nanorods, researchers at Swinburne University of Technology have demonstrated a potential breakthrough in cancer therapy.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.