Nanoscale 'Egg' Kills Tumor Cells with Platinum

Jan 22, 2007

Researchers at the Hong Kong University of Science and Technology have developed a nanoscale “egg” that could safely deliver platinum, a known anticancer agent, to tumor cells. Tests with this nanoscale egg, which has a hard cobalt shell surrounding a “yolk” of platinum and iron, show that it is seven times more toxic than the anticancer agent cisplatin to cancer cells.

Reporting its work in the Journal of the American Chemical Society, a team of investigators led by Bing Xu, Ph.D., describes the methods used to make these novel nanoparticles. The researchers start by synthesizing cobalt sulfide nanoparticles, which naturally form a hollow shell structure, in the presence of nanoparticles made of iron and platinum.

Transmission electron microscopy (TEM) and x-ray spectroscopy studies of these nanoparticles indicate that the resulting structures have a porous crystalline shell of cobalt sulfide surrounding nanocrystals of iron/platinum. The pores in the outer shell are large enough for water to access the interior of the nanoparticle.

When added to cultured human tumor cells, these nanoparticles had an immediate effect on cell viability. After 72 hours, all tumor cells exposed to the nanoparticles died. Again using TEM, the investigators showed that the cobalt sulfide shell remained intact after the nanoparticles were taken up by tumor cells. By themselves, hollow cobalt sulfide nanoparticles – the egg without the yolk – were not toxic to cultured human cancer cells.

The researchers hypothesize that cells take up the nanoparticles via a process known as endocytosis. As a result of endocytosis, the nanoparticles would end up in small intracellular compartments that are acidic. Under those conditions, the iron/platinum nanocrystals would dissolve, allowing the nanoscale eggs to release platinum into the cancer cells.

This work is detailed in a paper titled, “FePt@CoS2 yolk-shell nanocrystals as a potent agent to kill HeLa cells.” This paper was published online in advance of print publication. An abstract of this paper is available at the journal’s website.

Source: National Cancer Institute

Explore further: Physicists create new nanoparticle for cancer therapy

add to favorites email to friend print save as pdf

Related Stories

Physicists create new nanoparticle for cancer therapy

14 hours ago

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

Catching the early spread of breast cancer

Mar 19, 2014

When cancer spreads from one part of the body to another, it becomes even more deadly. It moves with stealth and can go undetected for months or years. But a new technology that uses "nano-flares" has the potential to catch ...

New nanoparticle that only attacks cervical cancer cells

Mar 17, 2014

One of the most promising technologies for the treatment of various cancers is nanotechnology, creating drugs that directly attack the cancer cells without damaging other tissues' development. The Laboratory ...

Recommended for you

Innovative strategy to facilitate organ repair

8 hours ago

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

Physicists create new nanoparticle for cancer therapy

Apr 16, 2014

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

User comments : 0

More news stories

'Exotic' material is like a switch when super thin

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Innovative strategy to facilitate organ repair

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...