Scientists study a magnetic makeover

Jan 17, 2007

Researchers at the University of Victoria have discovered new lightweight magnets that could be used in making everything from extra-thin magnetic computer memory to ultra-light spacecraft parts. A paper on the study will appear in the Jan. 18 edition of Nature.

For decades, researchers have attempted to create an alternative to conventional pure metal or metal alloy magnets, which are heavy, inflexible and can only be produced under high temperatures.

The team, led by UVic chemist Dr. Robin Hicks, discovered a simple method for making a new family of organic-based magnets by combining nickel and one of three different organic compounds. The discovery is the first step in designing the next generation of magnets which could, in theory, be easily manipulated at room temperature.

“The sky’s the limit for these magnets, in principle,” says Hicks. “Suppose you want to make a particular shape of magnet — these magnets could be dissolved in solution and shaped into a different form.”

“Conventional magnets are a ubiquitous part of everyday life, controlling everything from computers to cars, so I believe these new, highly processable magnets could have endless applications.”

The team will continue to fine-tune this next-generation of magnets, which resemble black powder, to further develop their processability and commercial potential.

Source: University of Victoria

Explore further: New research predicts when, how materials will act

add to favorites email to friend print save as pdf

Related Stories

Google hits back at rivals with futuristic HQ plan

17 hours ago

Google unveiled plans Friday for a new campus headquarters integrating wildlife and sweeping waterways, aiming to make a big statement in Silicon Valley—which is already seeing ambitious projects from Apple ...

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.