Dark energy may be vacuum

Jan 17, 2007

Researchers at the University of Copenhagen's Dark Cosmology Centre at the Niels Bohr Institute have brought us one step closer to understanding what the universe is made of. As part of the international collaboration ESSENCE they have observed distant supernovae (exploding stars), some of which emitted the light we now see more than half the age of the universe ago. Using these supernovae they have traced the expansion history of the universe with unprecedented accuracy and sharpened our knowledge of what it might be that is causing the mysterious acceleration of the expansion of the universe.

At the end of last century astronomers discovered the startling fact that the expansion of our universe is not slowing down, as all our previous understanding of gravity had predicted. Rather the expansion is speeding up. Nothing in conventional physics can explain such a result. It means that either the universe is made up of around 70% 'dark energy' (something that has a sort of anti-gravity) or our theory of gravity is flawed.

Now, as part of the international collaboration "ESSENCE", researchers at the Danish Dark Cosmology Centre have added a new piece to the puzzle. In two papers recently released they detail observations of supernovae (exploding stars) that allow them to trace the expansion history of the universe in unprecedented detail. ESSENCE is an extension of the original team that discovered the acceleration of the universe and these results push the limits of technology and knowledge, observing light from dying stars that was emitted almost half the age of the universe ago.

In a third paper, led by the Danish team and released this week, the many new theories that have been proposed to explain the acceleration of the universe are critically assessed in the face of this new data. Dr. Jesper Sollerman and Dr. Tamara Davis lead the team who show that despite the increased sophistication in cosmological models over the last century the best model to explain the acceleration remains one that was proposed by Einstein back in 1917. Although Einstein's reasoning at the time was flawed (he proposed the modification to his theory so it could support a static universe, because in those days everyone 'knew' the universe was not expanding, it may be that he was right all along.

The results include 60 new type Ia supernovae discovered on the Cerro-Tololo Interamerican Observatory 4m telescope in an ongoing survey that so far has lasted four years. In order to follow up these discoveries the team uses some of the biggest telescopes in the world: the 8.2m VLT (Very Large Telescope) run by the European Southern Observatory and the 6m Magellan telescope (both in Chile), the 8m Keck telescope and the 10m Gemini telescope (both in Hawaii). The ESSENCE team includes 38 top researchers from many different countries on four continents.

The primary aim of the experiment is to measure the 'dark energy' - the thing that is causing the acceleration of the universe - to better than 10%. The feature of this dark energy that we measure is its 'equation of state'. This also allows us to check whether our theory of gravity needs modification. So far it looks like our theory is correct and that the strange acceleration of the expansion of the universe can be explained by Einstein's 'cosmological constant'.

In modern terms the cosmological constant is viewed as a quantum mechanical phenomenon called the 'energy of the vacuum'. In other words, the energy of empty space. It is this energy that is causing the universe to accelerate. The new data shows that none of the fancy new theories that have been proposed in the last decade are necessary to explain the acceleration. Rather, vacuum energy is the most likely cause and the expansion history of the universe can be explained by simply adding this constant background of acceleration into the normal theory of gravity.

References:

On www.lanl.gov see:

1. astro-ph/0701043 Miknaitis et al. "The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry"

2. astro-ph/0701041 Wood-Vasey et al. "Observational Constraints on the Nature of the Dark Energy: First Cosmological Results from the ESSENCE
Supernova Survey"

3. astro-ph/******* Davis et al. "Scrutinizing exotic cosmological models using ESSENCE data combined with other cosmological probes" (to be published tomorrow, the number will be updated)

Source: University of Copenhagen

Explore further: Single laser stops molecular tumbling motion instantly

add to favorites email to friend print save as pdf

Related Stories

What lit up the universe?

Aug 27, 2014

New research from UCL shows we will soon uncover the origin of the ultraviolet light that bathes the cosmos, helping scientists understand how galaxies were built.

Spectacular supernova's mysteries revealed

Aug 22, 2014

(Phys.org) —New research by a team of UK and European-based astronomers is helping to solve the mystery of what caused a spectacular supernova in a galaxy 11 million light years away, seen earlier this ...

Of bees, mites, and viruses

Aug 21, 2014

Honeybee colonies are dying at alarming rates worldwide. A variety of factors have been proposed to explain their decline, but the exact cause—and how bees can be saved—remains unclear. An article published on August ...

Recommended for you

New method for non-invasive prostate cancer screening

6 hours ago

Cancer screening is a critical approach for preventing cancer deaths because cases caught early are often more treatable. But while there are already existing ways to screen for different types of cancer, ...

How bubble studies benefit science and engineering

8 hours ago

The image above shows a perfect bubble imploding in weightlessness. This bubble, and many like it, are produced by the researchers from the École Polytechnique Fédérale de Lausanne in Switzerland. What ...

Famous Feynman lectures put online with free access

8 hours ago

(Phys.org) —Back in the early sixties, physicist Richard Feynman gave a series of lectures on physics to first year students at Caltech—those lectures were subsequently put into print and made into text ...

Single laser stops molecular tumbling motion instantly

12 hours ago

In the quantum world, making the simple atom behave is one thing, but making the more complex molecule behave is another story. Now Northwestern University scientists have figured out an elegant way to stop a molecule from ...

User comments : 0