Powerful computer models reveal key biological mechanism

Jan 16, 2007
Intein
Intein crystal prior to protein splicing. Credit: Rensselaer/Philip Shemella

Using powerful computers to model the intricate dance of atoms and molecules, researchers at Rensselaer Polytechnic Institute have revealed the mechanism behind an important biological reaction. In collaboration with scientists from the Wadsworth Center of the New York State Department of Health, the team is working to harness the reaction to develop a "nanoswitch" for a variety of applications, from targeted drug delivery to genomics and proteomics to sensors.

The research is part of a burgeoning discipline called "quantum biology," which taps the skyrocketing power of today's high-performance computers to precisely model complex biological processes. The secret is quantum mechanics -- the much-touted theory from physics that explains the inherent "weirdness" of the atomic realm.

Reporting in the February 2007 issue of Biophysical Journal, the researchers describe a mechanism to explain how an intein -- a type of protein found in single-celled organisms and bacteria -- cuts itself out of the host protein and reconnects the two remaining strands. The intein breaks a protein sequence at two points: first the N-terminal, and then the C-terminal. This aspect of the project, which is led by Saroj Nayak, associate professor of physics, applied physics, and astronomy at Rensselaer, focuses on the C-terminal reaction.

Another Rensselaer team previously found that the reaction at the C-terminal speeds up in acidic environments. But to control the reaction and use it as a nanoswitch, a better understanding of the mechanism behind this reaction is needed, according to Philip Shemella, a doctoral student in physics at Rensselaer and corresponding author of the current paper.

"You can use this protein that cuts itself and joins the pieces together in a predictable way," he said. "It already has a function that would be nice to harness for nanotechnology purposes." And because the reaction may be sensitive to light and other environmental stimuli, the process could become more than just a two-way switch between "on" and "off."

The researchers revealed the details of the reaction mechanism by applying the principles of quantum mechanics -- a mathematical framework that describes the seemingly strange behavior of the smallest known particles. For example, quantum mechanics predicts that an electron can be in two different places at the same time; or that an imaginary cat can be simultaneously dead and alive, as suggested by one famous thought experiment.

Until recently, scientists could not apply quantum mechanics to biological systems because of the large numbers of atoms involved. But the latest generation of supercomputers, along with the development of efficient mathematical tools to solve quantum mechanical equations, is making these calculations possible, according to Shemella.

"Typically, quantum mechanics has been applied to solid-state problems because the symmetry makes the calculation smaller and easier, but there's really nothing different physically between a carbon atom in a protein and a carbon atom in a nanotube," he said. "Even though a protein is such an asymmetric, complex system, when you really zoom into the quantum mechanical level, they are just atoms. It doesn't matter if strange things are happening; it's still just carbon, nitrogen, hydrogen, and oxygen."

Quantum mechanics allows researchers to do things that can't be done with classical physics, such as modeling the way chemical bonds break and form, or including the effect of proton "tunneling" -- allowing protons to move through energy barriers that normal logic would deem impossible.

For this project, the researchers used computing facilities at Rensselaer's Scientific Computation Research Center (SCOREC) and the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign. In the future, they hope to take advantage of Rensselaer's new Computational Center for Nanotechnology Innovations -- a $100 million partnership between Rensselaer, IBM, and New York state to create one of the world's most powerful university-based supercomputing centers.

The additional computing power will allow them to model complex biological systems with even greater accuracy: "The more atoms you include, the more accurate your system," Shemella said.

Source: Rensselaer Polytechnic Institute

Explore further: It's particle-hunting season! NYU scientists launch Higgs Hunters Project

add to favorites email to friend print save as pdf

Related Stories

Triplet threat from the sun

Oct 21, 2014

The most obvious effects of too much sun exposure are cosmetic, like wrinkled and rough skin. Some damage, however, goes deeper—ultraviolet light can damage DNA and cause proteins in the body to break down ...

Proteins 'ring like bells'

Jun 03, 2014

As far back as 1948, Erwin Schrödinger—the inventor of modern quantum mechanics—published the book "What is life?" In it, he suggested that quantum mechanics and coherent ringing might be at the basis ...

How the "biological spark plug" in biomolecular motors works

Aug 04, 2014

Using high-performance computers and quantum mechanical methods, researchers at Heidelberg University have simulated processes that reveal how the "biological spark plug" works in the biomolecular motors of cells. Under the ...

Recommended for you

Particles, waves and ants

8 hours ago

Animals looking for food or light waves moving through turbid media – astonishing similarities have now been found between completely different phenomena.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.