Interactive binary stars show signs of induced hyperactivity

Jan 10, 2007
Interactive binary stars show signs of induced hyperactivity

Astronomers studying highly energetic binary stars called polars have obtained the first observational evidence that the intense magnetic fields produced by the white dwarf half of the interacting pair can induce flares, sunspots and other explosive activity in its otherwise low-wattage, low-mass partner.

"Like Dr. Frankenstein zapping an inert corpse, the white dwarfs in these systems produce very strong electrical currents inside the bodies of their partner star, which can create violent eruptions where there otherwise would be very little if any," said Stella Kafka, an astronomer at the National Optical Astronomy Observatory and lead author of one of two related research papers presented Jan. 7 in Seattle at the meeting of the American Astronomical Society. "These transitory phenomena occur on human time scales, lasting from minutes to years."

Decades ago, astronomers found evidence that other sun-like stars show large optical flares, star-spots, X-ray emission and other energetic activity cycles, especially when they are part of binary systems. In binaries, fast rotation rates and tidal interactions between the two stellar components are the primary contributors to the observed activity.

By contrast, the low-mass partners in polars (also known as magnetic cataclysmic variables) can be as small as the planet Jupiter, and range in mass from about 20 percent of the sun down to brown-dwarf-like objects with 5 percent or less of a solar mass. The masses of these companions are theoretically too low for conventional sun-like internal dynamos to be possible.

Thus, the surface activity detected by these studies is likely greatly enhanced by the white dwarf's strong magnetic field passing through the secondary low-mass star, causing large-scale electric currents in its interior. This flow of charged particles creates an effective dynamo mechanism.

"This discovery points to a new mechanism for the generation of stellar activity by forces outside of the star itself, a phenomenon that we have dubbed 'hyperactivity,'" said co-author Steve B. Howell of NOAO and the WIYN observatory.

Over the past two years, a team of astronomers consisting of Kafka, Howell, Kent Honeycutt (Indiana University), Fred Walter (State University of New York), Thomas Harrison (New Mexico State University) and Jeff Robertson (Arkansas Tech University) have carefully observed four polars (in particular, EF Eridanus and ST Leo Minor) using the 2.1-meter, 4-meter and WIYN 3.5-meter telescopes at Kitt Peak National Observatory, the Magellan 6.5-meter telescope and the ESO Very Large Telescope in Chile, for more than 20 nights of observing.

"Careful analysis of the resulting data shows strong evidence for the formation and structure of starspots and gigantic prominences and loops in the low-mass partner in these polars," Kafka said.

This is the first time that astronomers have strong observational evidence that strong magnetic-field interactions between the stars in a close binary system may be the primary ingredient for the formation of large starspots and flares.

Polars are binaries consisting of a white dwarf (an old star with a mass of one-half to one times that of the sun but a diameter approximately equal to Earth's), and a very cool, red, low-mass stellar object. The two stars are trapped in a close orbit about each other (separated by less than the diameter of the sun), completing a full circle in only 80 to 180 minutes.

"The interaction between the two stars creates a spaghetti-like pattern of magnetic field lines between the two stars," Howell said. "These magnetic fields confine gas around and between the two components and are responsible for triggering the enhanced activity on the low-mass star."

The artist's concept (see above) visualizes such an effect: it shows a cool low-mass red star with a highly magnetic white dwarf locked in a tight orbit by gravity. The interacting magnetic field lines (blue) produce large coronal loops on the low-mass red star, allowing for high-temperature material to flow along them as well as become trapped in them, similar to large loop-like prominences observed on the sun.

These systems can be looked at as scaled-up versions of exoplanet systems consisting of a sun-like star and a massive Jupiter-like planet in close orbit. As the planet orbits around its parent star, the outer atmosphere of the star responds to the passage of the planet.

Observations suggest that the magnetic field of the star permeates the planet and allows magnetic loops to reconnect by using the planet as a conductor. As a result, energetic activity would be induced in the planet's atmosphere, resulting in small flares and events similar to an aurora on Earth. The similar (though higher-level) phenomenon in magnetic cataclysmic variables is easier to study and therefore can provide more detailed information about such interactions, eventually leading to a comprehensive model.

Source: Indiana University

Explore further: Astronomers: 'Tilt-a-worlds' could harbor life

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Astronomers: 'Tilt-a-worlds' could harbor life

13 hours ago

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...

Pushy neighbors force stellar twins to diverge

21 hours ago

(Phys.org) —Much like an environment influences people, so too do cosmic communities affect even giant dazzling stars: Peering deep into the Milky Way galaxy's center from a high-flying observatory, Cornell ...

Image: Multiple protostars within IRAS 20324+4057

Apr 14, 2014

(Phys.org) —A bright blue tadpole appears to swim through the inky blackness of space. Known as IRAS 20324+4057 but dubbed "the Tadpole", this clump of gas and dust has given birth to a bright protostar, ...

Research group to study interstellar molecules

Apr 11, 2014

From April 2014, a new group will study interstellar molecules and use them to explore the entire star and planet formation process at the Max Planck Institute for Extraterrestrial Physics. Newly appointed ...

Astronomers suggest more accurate star formation rates

Apr 10, 2014

(Phys.org) —Astronomers have found a new way of predicting the rate at which a molecular cloud—a stellar nursery—will form new stars. Using a novel technique to reconstruct a cloud's 3-D structure, ...

User comments : 0

More news stories

Astronomers: 'Tilt-a-worlds' could harbor life

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...

NASA Cassini images may reveal birth of a Saturn moon

(Phys.org) —NASA's Cassini spacecraft has documented the formation of a small icy object within the rings of Saturn that may be a new moon, and may also provide clues to the formation of the planet's known ...

Vegetables on Mars within ten years?

The soil on Mars may be suitable for cultivating food crops – this is the prognosis of a study by plant ecologist Wieger Wamelink of Wageningen UR. This would prove highly practical if we ever decide to ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.