Research Continues for Deep Space Travel Propulsion

Jan 10, 2007
Research Continues for Deep Space Travel Propulsion
A graduate student watches a Plasmoid Thruster Experiment on the campus of The University of Alabama in Huntsville.

Graduate students and faculty researchers at The University of Alabama in Huntsville are investigating propulsion concepts that could eventually revolutionize deep space travel.

The Plasmoid Thruster Experiment (PTX) is a stepping stone to a highly efficient propulsion concept which could ultimately change how we travel in space, according to Dr. Jason Cassibry, a researcher in UAH’s Propulsion Research Center.

“Larger, more powerful versions can produce fusion for both power and space propulsion, allowing human travel to the outer planets,” he said.

Few groups around the country are working on this emerging technology, according to Cassibry. UAH is among that small number of research institutions.

The experimental branch of the Propulsion Research Center’s pulsed plasma research group is focused on gathering experimental data from PTX, which was originally built at NASA's Marshall Space Flight Center. MSFC donated the equipment to UAH last year.

The purpose of the PTX is to investigate the fundamental plasma and acceleration properties of a small-scale, pulsed plasma thruster.

PTX works by ringing a single turn conical theta pinch coil at about 500 kHz, ionizing and accelerating a small quantity of gas. The magnetic field inside the coil creates a plasmoid, a plasma that has a closed magnetic field structure.

One of the biggest challenges in any electric propulsion concept is increasing the lifetime of the thruster, which must run continuously for several years for deep space missions. Most electric propulsion concepts use plasma, which is in contact with electrodes or acceleration grids, causing erosion of the components and limiting the lifetime of the thruster. The plasmoid thruster potentially has a much longer lifetime, because the plasma is formed inductively, which means that the plasma is not in contact with the thruster components.

UAH researchers ran system tests and calibrations in October, and today the equipment is at full capacity.

In the short term, PTX will continue to take data in support of the ongoing development of the numerical models. This will be accomplished by using a laser interferometer to measure the plasma density. Also, magnetic field measurements help to determine size of the plasmoid. Together, these diagnostics provide a lot of information without affecting the plasmoid itself, according to Cassibry.

In the long term, the PTX experiment will be expanded by varying the coil geometry, adding bias flux and changing the initial conditions to study the effect on the coupling efficiency between the primary coil current and the secondary current in the plasmoid in an effort to improve plasma acceleration and thrust.

“Our experimental pulsed plasma group is keeping a watchful eye on the field of plasma science,” Cassibry said. “We believe that we now have the means and the ability to support further scientific developments in this field.”

Source: University of Alabama Huntsville

Explore further: The risks of blowing your own trumpet too soon on research

add to favorites email to friend print save as pdf

Related Stories

A hellacious two weeks on Jupiter's moon Io

Aug 04, 2014

Three massive volcanic eruptions occurred on Jupiter's moon Io within a two-week period last August, leading astronomers to speculate that these presumed rare "outbursts," which can send material hundreds ...

Looking back at the Jupiter crash 20 years later

Jul 16, 2014

(Phys.org) —Twenty years ago, human and robotic eyes observed the first recorded impact between cosmic bodies in the solar system, as fragments of comet Shoemaker-Levy 9 slammed into the atmosphere of Jupiter.

Tether solution for satellite de-orbiting and reentry

May 28, 2014

Satellite de-orbiting and re-entry is essential to halt the continuous increase in orbital space debris. The BETS project, which ends this month, is making waves with a new tether solution that is faster and more resistant ...

Recommended for you

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

holoman
1 / 5 (1) May 15, 2009
I really have a problem with propellant propulsion for interstellar travel, plus the added low particle velocity of plasma particles.

Antimatter propulsion would be the best and that is why I have a patent pending, not to be published at
my request.