A New Reflection in the Mirror

Jan 10, 2007 feature
A New Reflection in the Mirror
A scanning electron microscope image of some of the magnetic mirror´s “fish scale”-shaped aluminum nanowires. Credit: Alexander Schwanecke

A research group has devised a new type of mirror that reverses the magnetic field of a light wave upon reflection, rather than its electric field, as regular mirrors do. Seems like a minor difference? It's not.

“Our mirror's ability to reverse the magnetic field of a light wave but not its electric field is extremely unusual,” physicist Alexander Schwanecke, the study's corresponding scientist, said to PhysOrg.com. Schwanecke is a researcher at the NanoPhotonics Portfolio Centre at the University of Southampton in the United Kingdom. “It is the first demonstration of an entirely new type of optical tool.”

A typical household mirror works like this: Photons (particles of light) bounce off an object or person, hit the mirror, and are absorbed by electrons on the surface of its metal backing. The electrons almost instantly emit “reflected” photons (not the same photons that came in, as those are absorbed and gone), which travel to our eyes, allowing us to see our image. Photons that strike the mirror head-on are reflected squarely back, and those hitting at an angle are reflected at the same angle in the other direction, forming a V-shaped path. This is the law of reflection.

To understand the work by Schwanecke and his colleagues, however, we must remember that light is both a particle and a wave, and that, as a wave, it consists of an electric-field component and a magnetic-field component. After a reflection, the direction of the emitted light wave's electric field is reversed (this is one type of a “phase change”) but the magnetic component is not.

This magnetic mirror produces the opposite scenario: a flipped magnetic field and an unchanged electric field. The mirror has three layers: a layer of aluminum, a layer of silicon dioxide, and finally a layer of carefully arranged aluminum nanowires, shaped into a wavy pattern that the researchers call “fish scales.” The fish-scale shape is important because it allows the light to interact with the nanowires in a particular way, due to the spacing between each “scale.” As a result, the scales resonate with the light much like molecules would.

The mirror is tiny and square, about 500 micrometers (millionths of a meter) on each side, and contains about one million fish-scale-shaped elements. It works best for visible light, but the group expects that, with some tweaks to the fish-scale pattern, near-infrared light would work, too.

The nanowire layer is the key to the mirror's function. The curved nanowire “fish scales,” like molecules, have dimensions that are smaller than the wavelength of visible light. This means that they can interact with the light to influence or directly produce the material's overall optical response, in this case, a reversal of the light's magnetic field.

The researchers discovered the mirror's ability by observing a reflection using an interferometer, a device that can detect the difference in behavior of two light waves by recording what happens when they “interfere,” or cross paths.

“One characteristic of our mirror is that it is very sensitive to energy losses at the surface,” said Schwanecke. “This property could make it very useful for improving devices that work by detecting light, such as photodetectors.”

The mirror could also be useful, he says, in the detection of tiny particles or molecules near the mirror’s surface. If a particle or molecule was nearby and emitted a photon, the mirror would reflect the photon’s electric component without reversing it. A “normal” mirror would reverse it, thus weakening the signal and making it harder to detect the photon and, by extension, the particle or molecule.

The mirror’s potential to work with near-infrared light (light close to the visible range but still in the infrared) could make it advantageous to the telecommunications industry, in which near-infrared light is commonly used.

Citation: A.S. Schwanecke, V.A. Fedotov, V.V. Khardikov, S.I. Prosvirnin, Y. Chen, and N.I. Zheludev, “Optical magnetic mirrors.” J. Opt. A: Pure Appl. Opt. 9 (2007) L1-L2

By Laura Mgrdichian, Copyright 2006 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: A new generation of storage—ring

add to favorites email to friend print save as pdf

Related Stories

Ancient auditory illusions reflected in prehistoric art?

Oct 28, 2014

Some of mankind's earliest and most mysterious artistic achievements—including prehistoric cave paintings, canyon petroglyphs and megalithic structures such as Stonehenge—may have been inspired by the ...

Scientists build first map of hidden universe

Oct 16, 2014

A team led by astronomers from the Max Planck Institute for Astronomy has created the first three-dimensional map of the 'adolescent' Universe, just 3 billion years after the Big Bang. This map, built from ...

Light scattering on dust holds clues to habitability

Sep 25, 2014

We are all made of dust. Dust particles can be found everywhere in space. Disks of dust and debris swirl around and condense to form stars, planets and smaller objects like comets, asteroids and dwarf planets. ...

Recommended for you

A new generation of storage—ring

16 hours ago

A bright synchrotron source that emits over a wide part of the electromagnetic spectrum from the infrared to hard X-rays is currently being built in Lund, Sweden. The MAX IV facility presents a range of technical ...

Universe may face a darker future

20 hours ago

New research offers a novel insight into the nature of dark matter and dark energy and what the future of our Universe might be.

High-intensity sound waves may aid regenerative medicine

Oct 30, 2014

Researchers at the University of Washington have developed a way to use sound to create cellular scaffolding for tissue engineering, a unique approach that could help overcome one of regenerative medicine's ...

Formula could shed light on global climate change

Oct 30, 2014

Wright State University researchers have discovered a formula that accurately predicts the rate at which soil develops from the surface to the underlying rock, a breakthrough that could answer questions about ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.