System X Used to Model Behavior of Entire Structures

Jan 08, 2007
System X Used to Model Behavior of Entire Structures
Elisa Sotelino, professor of civil and environmental engineering (CEE) at Virginia Tech, has developed a family of parallel algorithms, named Group Implicit Algorithms, which have had a major impact in the nonlinear dynamic analysis of structures. She joined the CEE faculty because she needs the advantages of the parallel computing capabilities of System X, the university´s supercomputer. Credit: John McCormick, Virginia Tech Photo

Elisa Sotelino, professor of civil and environmental engineering at Virginia Tech, has developed a family of parallel algorithms, named Group Implicit Algorithms, which have had a major impact in the nonlinear dynamic analysis of structures.

“I don’t do dirty,” Elisa Sotelino says with her contagious laugh as she describes her engineering work.

What she does do is use Virginia Tech’s squeaky clean supercomputer, System X, to learn how entire structures will behave under different circumstances such as a compartment fire or an earthquake.

“I am using the knowledge of the computer scientist and applying it to structural engineering,” the Brazilian native explains, thus bridging the two disciplines.

A simple explanation might be the following. In the laboratory, a structural engineer will evaluate the load a bridge girder will sustain before failing. On the highway, a driver sees the result of this testing by the display of a road sign that says “Weight limit: 20 tons” just before the bridge crossing.

“What I do is take the initial information that the structural engineer obtains in the lab and create mathematical models to predict loads for similar structures,” Sotelino says. “My models are very large and I need the advantages of the parallel computing capabilities of System X to run these models. However, in order to fully take advantage of this computer’s architecture new algorithms must be devised.”

Oftentimes, when a structure is built, there is an imprecise “margin of error so the designer will enact a margin of safety. I call this a margin of ignorance,” Sotelino says.

With an infinite amount of money or by placing a building underground, “we can prevent the catastrophic structural failure that occurred with the World Trade Center,” but these answers are not feasible in the real world, Sotelino says.

“We can solve any mathematical problem, but the bottom line issues are always money and visual appeal,” the internationally recognized expert asserts.

One of her major contributions in her field is a family of parallel algorithms, named Group Implicit algorithms, which have had a major impact in the nonlinear dynamic analysis of structures.

Sotelino also created an object-oriented, concurrent software development environment for computationally intensive structural engineering applications. Called Structural Engineering Concurrent Software Development Environment (SECSDE), its components facilitate the reuse, rapid prototyping and portability of parallel finite element analysis software for programming and execution of computationally intensive structural engineering applications.

Part of Virginia Tech’s first cluster hire in the area of computational science and engineering, Sotelino was attracted to the Blacksburg campus because of System X . For 14 years, she had excelled on the Purdue University faculty as a member of its school of civil engineering (CE).

“I have always been open to new possibilities,” Sotelino says, “and when Virginia Tech recruited me, it felt right.”

Since arriving at Virginia Tech, Sotelino has initiated research ventures with a number of faculty, including Linbing Wang and others in the transportation area, Layne Watson and others in the Computer Science department, as well as her colleagues in structural engineering, and she continues to work with researchers at Purdue.

Source: Virginia Tech

Explore further: MIT groups develop smartphone system THAW that allows for direct interaction between devices

add to favorites email to friend print save as pdf

Related Stories

China demand to fuel Hong Kong iPhone grey market

16 hours ago

Wealthy mainland Chinese looking to buy the new iPhone 6 next week could expect to pay an eye-watering US$2,500 for the handsets in Hong Kong, following Apple's decision to delay the launch in China.

Netflix sets sights on European screens

16 hours ago

US online streaming giant Netflix will launch the second phase of its European expansion plan on Monday as it sets about seducing French viewers with a "House of Cards"-style drama set in Marseille.

MIT ATLAS robot demo shows advanced moves (w/ Video)

Sep 07, 2014

The bipedal robot ATLAS from MIT is moving on. Reacting to the recent video of "MIT Atlas truckin' with a truss," TechCrunch said, "We've seen the cute little guy walk, toddle, and climb over obstacles but ...

Recommended for you

Who drives Alibaba's Taobao traffic—buyers or sellers?

18 hours ago

As Chinese e-commerce firm Alibaba prepares for what could be the biggest IPO in history, University of Michigan professor Puneet Manchanda dug into its Taobao website data to help solve a lingering chicken-and-egg question.

Computerized emotion detector

Sep 16, 2014

Face recognition software measures various parameters in a mug shot, such as the distance between the person's eyes, the height from lip to top of their nose and various other metrics and then compares it with photos of people ...

Cutting the cloud computing carbon cost

Sep 12, 2014

Cloud computing involves displacing data storage and processing from the user's computer on to remote servers. It can provide users with more storage space and computing power that they can then access from anywhere in the ...

Teaching computers the nuances of human conversation

Sep 12, 2014

Computer scientists have successfully developed programs to recognize spoken language, as in automated phone systems that respond to voice prompts and voice-activated assistants like Apple's Siri.

User comments : 0