Astronomers detect black hole in tiny 'dwarf' galaxy

Jan 07, 2007
Astronomers detect black hole in tiny 'dwarf' galaxy
A Hubble Space Telescope image shows a dwarf galaxy, VCC128, at the center, and the enlargement at right shows a double nucleus that suggests the presence of a black hole. Credit: NASA/Hubble Space Telescope

Astronomers have found evidence of a supermassive black hole at the heart of a dwarf elliptical galaxy about 54 million light years away from the Milky Way galaxy where Earth resides.

It is only the second time a supermassive black hole has been discerned in a dwarf galaxy, and only the third time that astronomers have observed a double nucleus at the heart of a galaxy, said Victor P. Debattista, a postdoctoral researcher in astronomy at the University of Washington.

The galaxy, called VCC128, lies in the Virgo Cluster and is about 1 percent the size of the Milky Way. All of its stars combined would equal 100 million to 1 billion of our suns, Debattista said.

Astronomers detect black hole in tiny 'dwarf' galaxy
An artist's depiction of VCC128 shows a massive black hole (black dot) at the center of a stellar envelope. A ring of stars, which appears as a double nucleus, surrounds the black hole. Credit: Victor Debattista

"It's a very small galaxy, on the outskirts of the cluster," he said. "It is effectively the smallest galaxy in which there is a supermassive black hole."

Black holes lie at the center of many galaxies, and have gravitational fields so powerful that nothing – not even light – can escape. A supermassive black hole is so large that its mass equals anywhere between 100,000 and 10 billion of our suns.

Debattista is the lead author of a poster detailing the discovery being presented today at the American Astronomical Society national meeting in Seattle. Co-authors are Ignacio Ferreras of Kings College in London, Anna Pasquali of the Max-Planck-Institut für Astronomie in Germany, Anil Seth at the Harvard-Smithsonian Center for Astrophysics in Boston, Sven De Rijcke of the Universiteit Gent in Belgium, and Lorenzo Morelli of Pontificia Universidad Católica in Chile.

The scientists were sifting through archived data from the Hubble Space Telescope when they found the supermassive black hole. They were studying the nuclei of dwarf galaxies, which are thought to develop from globular clusters, tightly packed spherical collections of stars that orbit a galaxy. As they examined the properties of the nuclei, they discovered one galaxy, VCC128, that had a double nucleus. Ultimately they determined the double nucleus is made up of two points of light from stars collected at opposite edges of a ring surrounding a black hole. Using the 3.5-meter telescope at the Apache Point Observatory in New Mexico, they measured properties of light from the nucleus and found that the nucleus is a ring of stars at least 1 billion years old, meaning the system probably is very stable.

"The fact that we found a black hole is impressive because it's been thought that a galaxy this small should not be able to host a black hole," Debattista said. "It had been speculated that dwarf galaxies like this could not make black holes."

The researchers believe the black hole has a mass at least equal to the ring of stars surrounding it, ranging from 1 million to 50 million times the mass of our sun.

"The question remains whether other dwarf galaxies with bright nuclei are indeed similar systems. We may not see more of these stellar rings because they are so small," said Ferreras.

The finding helps in understanding the processes occurring in low-mass dwarf galaxies as they travel through space and merge with other dwarfs to form larger galaxies. As that happens, their black holes also become more massive.

"The dwarf galaxies that escaped from this merging process offer us the opportunity to study the properties of the building blocks of today's massive galaxies and the supermassive black holes they host," said De Rijcke.

Source: University of Washington

Explore further: What's the brightest star in the sky, past and future?

add to favorites email to friend print save as pdf

Related Stories

Dark matter guides growth of supermassive black holes

Feb 18, 2015

Every massive galaxy has a black hole at its center, and the heftier the galaxy, the bigger its black hole. But why are the two related? After all, the black hole is millions of times smaller and less massive ...

What makes the solar system interesting to astronomers?

Feb 17, 2015

While most of us are stuck on planet Earth, we're lucky enough to have a fairly transparent atmosphere. This allows us to look up at the sky and observe changes. The ancients noticed planets wandering across ...

Telescopes give shape to furious black hole winds

Feb 19, 2015

NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) and ESA's (European Space Agency) XMM-Newton telescope are showing that fierce winds from a supermassive black hole blow outward in all directions—a ...

Astronomers find unexpected 'storm' at galaxy's core

Feb 11, 2015

Astronomers using the National Science Foundation's Very Large Array (VLA) found surprisingly energetic activity in what they otherwise considered a "boring" galaxy, and their discovery provides important ...

Recommended for you

Could the Milky Way become a quasar?

Feb 27, 2015

A quasar is what you get when a supermassive black hole is actively feeding on material at the core of a galaxy. The region around the black hole gets really hot and blasts out radiation that we can see billions ...

Galactic dinosaurs not extinct

Feb 27, 2015

One of the biggest mysteries in galaxy evolution is the fate of the compact massive galaxies that roamed the early Universe.

Stars found forming at Milky Way's outer edge

Feb 27, 2015

Brazilian astronomers said Friday they had found two star clusters forming in a remote part of our Milky Way galaxy where such a thing was previously thought impossible.

New insight found in black hole collisions

Feb 26, 2015

New research by an astrophysicist at The University of Texas at Dallas provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.