Group of galaxies found to bend the light of remote galaxies

Jan 03, 2007
Galaxy group lens in the CFHTLS-SL2S
This example of a galaxy group lens in the CFHTLS-SL2S, called SL2SJ021408-053532, shows a very complex arc structure (in blue). Such complex arc geometries allow us to probe the details of the dark matter profiles associated with the group of yellow galaxies in the center of the image. © Canada-France-Hawaii Telescope Corporation 2006

The discovery of a new class of gravitational lenses, the groups of galaxies, by an international team of astronomers using the Canada-France-Hawaii Legacy Survey (CFHTLS), comes 20 years after the publication in January 1987 of the first image of a gravitational arc, made also at CFHT with one of the first CCD cameras in operation at an observatory.

This discovery of gravitational arcs in the center of galaxy groups is an important step in our understanding of the large scale structures of the universe. These new results will allow a better understanding of the distribution of the dark matter and the formation mechanisms of the groups of galaxies, structures intermediate in mass between galaxies and clusters of galaxies.

Twenty years ago at CFHT, French astronomers observed for the first time galaxies distorted in giant arcs at the center of the most massive galaxy clusters. These observations brought to light one of the most spectacular effects of what is called "gravitational lensing".

According to Einstein’s theory of General Relativity, spacetime is curved by the presence of matter. Therefore, the light passing close to an important concentration of mass will be bent. When an observer, a galaxy cluster and a remote galaxy are in nearly perfect alignment, the remote galaxy appears to the observer as one or more luminous arcs resulting from the fusion of images of the remote galaxy distorted and amplified by the galaxy cluster acting as a complex gravitational lens. The shape, brightness and distribution of these gravitational arcs bring invaluable information on the mass distribution of the lensing cluster.

Up to recently, only the most massive galaxy clusters and the massive galaxies were the object of gravitational lensing studies. Intermediate-scale structures like the galaxy groups should however be looked in order to better understand the evolution of the structures in the Universe.

Since the arrival of the MegaCam camera in 2003 on Megaprime, the new CFHT prime focus, astronomers have been able to observe at once a large area of the sky (1 square degree or 4 Full Moon) in 340 MegaPixel digital images with an unprecedented resolution for such a field of view. The Canadian and French communities decided to pull their resources together and to devote 500 nights of telescope time over five years to a large project, the CFHT Legacy Survey, which will cover around 1% of the sky visible from Hawaii.

Thanks to a careful inspection aimed at detecting gravitational arcs in one fourth of the CFHTLS, the team has been able to detect for the first time numerous arcs around galaxy groups. This unexpected discovery provides for the first time direct information on the structure of galaxy groups which are key environments in the formation of structures in the Universe. Scientists will be able to understand the role of dark matter in the evolution of these groups and of the mass concentrations that make the large structures of the Universe.

Source: CFHT

Explore further: Experts and audience contest Pluto's 'dwarf planet' status

add to favorites email to friend print save as pdf

Related Stories

The Great Cold Spot in the cosmic microwave background

Sep 19, 2014

The cosmic microwave background (CMB) is the thermal afterglow of the primordial fireball we call the big bang. One of the striking features of the CMB is how remarkably uniform it is. Still, there are some ...

Variables of nature

Sep 05, 2014

Within physics there are certain physical quantities that play a central role. These are things such as the mass of an electron, or the speed of light, or the universal constant of gravity. We aren't sure ...

Modified theory of dark matter

Sep 12, 2014

Dark matter is an aspect of the universe we still don't fully understand. We have lots of evidence pointing to its existence (as I outlined in a series of posts a while back), and the best evidence we have point ...

Gaia discovers its first supernova

Sep 12, 2014

(Phys.org) —While scanning the sky to measure the positions and movements of stars in our Galaxy, Gaia has discovered its first stellar explosion in another galaxy far, far away.

Mysterious quasar sequence explained

Sep 10, 2014

Quasars are supermassive black holes that live at the center of distant massive galaxies. They shine as the most luminous beacons in the sky across the entire electromagnetic spectrum by rapidly accreting ...

Recommended for you

The frequency of high-energy gamma ray bursts

41 minutes ago

In the 1960s a series of satellites were built as part of Project Vela.  Project Vela was intended to detect violations of the 1963 ban on above ground testing of nuclear weapons.  The Vela satellites were ...

What causes the diffraction spikes in images of stars?

51 minutes ago

When stars are portrayed in media, they are often shown with long spikes emanating from them. Perhaps the most common example is that of the "star of Bethlehem" which, according to the story, led the wise ...

User comments : 0