Slower light could mean faster computers

Dec 22, 2006

IBM today announced its researchers have built a device capable of delaying the flow of light on a silicon chip, a requirement to one day allow computers to use optical communications to achieve better performance.

Researchers have known that the use of optical instead of electrical signals for transferring data within a computer chip might result in significant performance enhancements since light signals can carry more information faster. Yet, "buffering" or temporarily holding data on the chip is critical in controlling the flow of information, so a means for doing so with light signals is necessary. The work announced today outlines just such a means for buffering optical signals on a chip.

"Today's more powerful microprocessors are capable of performing much more work if we can only find a way to increase the flow of information within a computer," said Dr. T.C. Chen, vice president of Science and Technology for IBM Research. "As more and more data is capable of being processed on a chip, we believe optical communications is the way to eliminate these bottlenecks. As a result, the focus in high-performance computing is shifting from improvements in computation to those in communication within the system."

Long delays can be achieved by passing light through optical fibers. However, the current "delay line" devices for doing so are too large for use on a microchip, where space is precious and expensive. For practical on-chip integration, the area of a delay line should be well below one square millimeter and its construction should be compatible with current chip manufacturing techniques.

IBM scientists were able to meet this size restriction and achieve the necessary level of control of the light signal by passing it through a new form of silicon-based optical delay line built of up to 100 cascaded "micro-ring resonators," built using current silicon complementary metal-oxide-semiconductor (CMOS) fabrication tools. When the optical waveguide is curved to form a ring, light is forced to circle multiple times, delaying its travel. The optical buffer device based on this simple concept can briefly store 10 bits of optical information within an area of 0.03 square millimeters. That's 10 percent of the storage density of a floppy disk, and a great improvement compared to previous results. This advancement could potentially lead to integrating hundreds of these devices on one computer chip, an important step towards on-chip optical communications.

The report on this work, "Ultra-compact optical buffers on a silicon chip," by Fengnian Xia, Lidija Sekaric and Yurii Vlasov of IBM's T.J.Watson Research Center in Yorktown Heights, N.Y., is published December 22 in the premiere issue of the journal Nature Photonics.

Source: IBM

Explore further: X-ray powder diffraction beamline at NSLS-II takes first beam and first data

add to favorites email to friend print save as pdf

Related Stories

Scientists light the way for future electronic devices

Nov 17, 2014

Researchers from the Optoelectronics Research Centre (ORC) at the University of Southampton have demonstrated how glass can be manipulated to create electronic devices that will be smaller, faster and consume ...

Engineers efficiently 'mix' light at the nanoscale

Nov 13, 2014

The race to make computer components smaller and faster and use less power is pushing the limits of the properties of electrons in a material. Photonic systems could eventually replace electronic ones, but ...

Recommended for you

Scientists film magnetic memory in super slow-motion

12 hours ago

Researchers at DESY have used high-speed photography to film one of the candidates for the magnetic data storage devices of the future in action. The film was taken using an X-ray microscope and shows magnetic ...

Particles, waves and ants

Nov 26, 2014

Animals looking for food or light waves moving through turbid media – astonishing similarities have now been found between completely different phenomena.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.