Discovery sheds new light on cause of earthquakes

Dec 14, 2006
Discovery sheds new light on cause of earthquakes
A large fault zone in the Atacama Desert in northern Chile. Credit: University of Liverpool

Research at the University of Liverpool into a large fault zone in the Atacama Desert in northern Chile has produced new insight into how fluid pressure can cause earthquakes.

Scientists have found how fluids, such as water, become sealed within the earth’s fault planes for a long period of time. This fluid pressure makes it easier for the earth’s plates to move alongside each other, eventually resulting in an earthquake.

Dr Dan Faulkner explains: “The difficulty with predicting earthquakes is that we know so little about how fault planes work. Over the years we have found that even small stresses acting on the earth’s plates can cause large earthquakes. For example the Loma Prieta earthquake in 1989 caused massive devastation, yet there was very little stress acting on the plate boundary to cause the quake in the first place.

“In theory, high stresses are needed to cause slip along a fault plane, but if something like pressurised water or gas gets inside the fault then it should act as a kind of cushion, making movement between plates easier and an earthquake more likely. Until now a problem with this theory was that as fluid pressures increased the rocks would crack and the fluids could escape through the cracks, reducing the ‘cushion’ effect. Our recent study, however, found that much smaller cracks surrounding the fault plane change the stresses acting on the rock, reducing the likelihood of significant cracks forming and allowing the fluid to escape.”

The team measured the density of ‘microcracks’ in the rock near the Chile fault line and applied varying amounts of stress to the rock to see how it responded. They found the ‘microcracks’ changed the elasticity of the rock, which meant stresses that might normally occur at almost right angles to the fault line rotated to a 45 degree angle instead.

Under normal stresses fluid would build up to such as extent that the rock would break and the fluid would escape, reducing the risk of an earthquake. When stress, however, occurs at a 45 degree angle the rock is less likely to break and the low fluid pressures inside can cause earthquakes.

Dr Faulkner added: “We now need to conduct further study into where these fluids and gases are coming from. Scientists are currently drilling of the San Andreas Fault in California, to help us understand more fully the mechanics of fault zones and how earthquakes occur.”

The San Andreas Fault Observatory at Depth (SAFOD) is a deep borehole observatory that will measure the physical conditions under which plate boundary earthquakes occur. Dr Faulkner is one of only two UK scientists who currently have access to rock drilled from the San Andreas Fault, which will be analysed in order to understand fault behaviour.

Dr Faulkner’s research is published in Nature Magazine.

Notes:

What is an earthquake?

• The Earth's lithosphere is made up of plates which are in constant motion. Plate boundaries slide past each other, creating frictional stress. When the frictional stress exceeds a certain point a failure occurs along plate boundaries, known as the fault plane. When the failure results in a displacement of the Earth's crust, seismic waves are radiated causing an earthquake.

Largest earthquakes on record:

• 1960 – Chile: 9.5 (magnitude)
• 1737 – Kamchatka: Russia: 9.3 (magnitude)
• 1964 – Alaska, US: 9.2 (magnitude)
• 2004 – Sumatra, Indonesia: 9.0-9.3 (magnitude)
• 1957 – Alaska, US: 9.1 (magnitude)

Source: University of Liverpool

Explore further: Pre-1950 structures suffered the most damage from August 2014 Napa quake

add to favorites email to friend print save as pdf

Related Stories

Deep Alpine Fault borehole primed with instruments

Jan 14, 2015

An ambitious project to drill 1.3 kilometres into the Alpine Fault has been halted early by equipment problems, but it has still yielded a large amount of useful information about the inner workings of the ...

Deep fault drilling project

Dec 15, 2014

It rains a lot in the tiny south Westland town of Whataroa. Every year, this region gets some of the highest rainfall totals recorded anywhere in the World and Whataroa is one of the wetter parts. The town is nestled beneath ...

Understanding oceanic earthquake precursors

Oct 21, 2014

Published on 14 September in Nature Geoscience, a study conducted by researchers from several institutes, including IFREMER (French Research Institute for Exploitation of the Sea), CNRS and IFSTTAR, offers the first theore ...

Scientific drilling project underway on Alpine Fault

Oct 06, 2014

The ambitious project near Whataroa, north of Franz Josef Glacier, is expected to take about two months to complete. It will enable scientists to install monitoring equipment deep inside the fault to record small earthquakes ...

Recommended for you

A new level of earthquake understanding

3 hours ago

As everyone who lives in the San Francisco Bay Area knows, the Earth moves under our feet. But what about the stresses that cause earthquakes? How much is known about them? Until now, our understanding of ...

Combined Arctic ice observations show decades of loss

6 hours ago

It's no surprise that Arctic sea ice is thinning. What is new is just how long, how steadily, and how much it has declined. University of Washington researchers compiled modern and historic measurements to ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.