Spelling out cancer on the nanoscale

Dec 13, 2006

Tumors start small and stay quiet, yet their intentions are clearly spelled out internally, if we could only read them. No matter how small, every tumor reveals its identity in tiny amounts of abnormally expressed proteins called oncoproteins. Being able to read trace oncoprotein levels from early-stage tumors would speak volumes to physicians and cancer researchers. Enter nano-fluidics and the art of reading a lot from very little.

Researchers led by Dean Felsher at Stanford University School of Medicine, and bioengineers at Cell Biosciences in Palo Alto, collaborated to develop an automated, high-throughput, nano-fluidic system that was able to measure the levels of three oncoproteins: MYC, BCL2, and AKT, in tiny samples drawn as very fine needle aspirates from hematopoetic tumor cells in preclinical transgenic mouse models. The nano-fluidic system physically separates the proteins in very small capillary tubes and then uses antibodies for protein detection. It was also tested on human lymphoma samples.

In previous work, the Felsher group had shown that inactivating MYC induces sustained tumor regression in mice. The researchers decided to test their conditional model of MYC-induced lymphoma by using their nano-fluidic system to quickly measure the impact of targeted protein inhibitors in mice. A series of fine needle-aspirated samples was analyzed, confirming a decrease in oncoprotein levels.

The new nano-fluidic system was also tested on human tumors by measuring the levels of MYC, BCL2, ERK, and AKT proteins in the lymph nodes obtained from patients with Burkitt’s, mantle cell, or follicular lymphoma. The nano-fluidic system reported that MYC was overexpressed in Burkitt’s, while BCL2 was overexpressed in mantle cell and follicular lymphoma patients. In parallel, traditional Western blots were performed to confirm BCL-2 and MYC levels.

"Our strategy can be used to repetitively and quickly assess the levels of oncoproteins in cancer cells grown in the laboratory and in human patients," says Felsher. "It may prove useful for the early detection of cancer, and for monitoring patients’ responses during their treatment, allowing clinicians to tailor treatments to individual patients. Finally, we provide a high throughput method to identify if new cancer drugs are effective at targeting specific oncoproteins."

Source: American Society for Cell Biology

Explore further: Combining magnetism and light to fight cancer

Related Stories

Recommended for you

Combining magnetism and light to fight cancer

35 minutes ago

By combining, in a liposome, magnetic nanoparticles and photosensitizers that are simultaneously and remotely activated by external physical stimuli (a magnetic field and light), scientists at the Laboratoire ...

Scientists convert microbubbles to nanoparticles

Mar 30, 2015

Biomedical researchers led by Dr. Gang Zheng at Princess Margaret Cancer Centre have successfully converted microbubble technology already used in diagnostic imaging into nanoparticles that stay trapped in tumours to potentially ...

Designer's toolkit for dynamic DNA nanomachines

Mar 26, 2015

The latest DNA nanodevices created at the Technische Universitaet Muenchen (TUM)—including a robot with movable arms, a book that opens and closes, a switchable gear, and an actuator—may be intriguing ...

Simple method of binding pollutants in water

Mar 26, 2015

New types of membrane adsorbers remove unwanted particles from water and also, at the same time, dissolved substances such as the hormonally active bis-phenol A or toxic lead. To do this, researchers at the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.