Abrupt ice retreat could produce ice-free arctic summers by 2040

Dec 11, 2006
The image at left, based on simulations produced by the Community Climate System Model, shows the approximate extent of Arctic sea ice in September. The model indicates the extent of this late-summer ice could begin to retreat abruptly within several decades. By about 2040 (image at right), the Arctic may be nearly devoid of sea ice during the late summer unless greenhouse gas emissions are significantly curtailed. (Illustrations ©UCAR)

The recent retreat of Arctic sea ice is likely to accelerate so rapidly that the Arctic Ocean could become nearly devoid of ice during summertime as early as 2040, according to new research published in the December 12 issue of Geophysical Research Letters.

The study, by a team of scientists from the National Center for Atmospheric Research (NCAR), the University of Washington, and McGill University, analyzes the impact of greenhouse gas emissions on the Arctic. Scenarios run on supercomputers show that the extent of sea ice each September could be reduced so abruptly that, within about 20 years, it may begin retreating four times faster than at any time in the observed record.

"We have already witnessed major losses in sea ice, but our research suggests that the decrease over the next few decades could be far more dramatic than anything that has happened so far," says NCAR scientist Marika Holland, the study's lead author. "These changes are surprisingly rapid."

Arctic sea ice has retreated in recent years, especially in the late summer, when ice thickness and area are at a minimum. To analyze how global warming will affect the ice in coming decades, the team studied a series of seven simulations run on the NCAR-based Community Climate System Model, one of the world's leading tools for studying climate change. The scientists first tested the model by simulating fluctuations in ice cover since 1870, including a significant shrinkage of late-summer ice from 1979 to 2005. The simulations closely matched observations, a sign that the model was accurately capturing the present-day climate variability in the Arctic.

The team then simulated future ice loss. The model results indicate that, if greenhouse gases continue to build up in the atmosphere at the current rate, the Arctic's future ice cover will go through periods of relative stability followed by abrupt retreat. For example, in one model simulation, the September ice shrinks from about 2.3 million to 770,000 square miles in a 10-year period. By 2040, only a small amount of perennial sea ice remains along the north coasts of Greenland and Canada, while most of the Arctic basin is ice-free in September. The winter ice also thins from about 12 feet thick to less than 3 feet.

Why expect abrupt change?

The research team points to several reasons for the abrupt loss of ice in a gradually warming world. Open water absorbs more sunlight than does ice, meaning that the growing regions of ice-free water will accelerate the warming trend. In addition, global climate change is expected to influence ocean circulations and drive warmer ocean currents into the Arctic.

"As the ice retreats, the ocean transports more heat to the Arctic and the open water absorbs more sunlight, further accelerating the rate of warming and leading to the loss of more ice," Holland explains. "This is a positive feedback loop with dramatic implications for the entire Arctic region."

Avoiding abrupt change

The scientists also conclude that different rates of greenhouse gas emissions can affect the probability of abrupt ice loss. By examining 15 additional leading climate models, they found that if emissions of carbon dioxide and other greenhouse gases were to slow, the likelihood of rapid ice loss would decrease. Instead, summer sea ice would probably undergo a much slower retreat.

"Our research indicates that society can still minimize the impacts on Arctic ice," Holland says.

The study drew on extensive and sophisticated computer modeling recently carried out for the Intergovernmental Panel on Climate Change. The IPCC's next assessment report will be released early in 2007.

Source: University Corporation for Atmospheric Research

Explore further: NASA's HS3 mission spotlight: The HIRAD instrument

add to favorites email to friend print save as pdf

Related Stories

Has Antarctic sea ice expansion been overestimated?

19 hours ago

New research suggests that Antarctic sea ice may not be expanding as fast as previously thought. A team of scientists say much of the increase measured for Southern Hemisphere sea ice could be due to a processing ...

2013 New Zealand's warmest winter on record

Jul 18, 2014

The world continued to warm last year, according to the State of the Climate in 2013 report, with some Southern Hemisphere countries, including New Zealand, having one of their warmest years on record.

What geology has to say about global warming

Jul 14, 2014

Last month I gave a public lecture entitled, "When Maine was California," to an audience in a small town in Maine. It drew parallels between California, today, and Maine, 400 million years ago, when similar ...

Recommended for you

Fires in Central Africa During July 2014

2 hours ago

Hundreds of fires covered central Africa in mid-July 2014, as the annual fire season continues across the region. Multiple red hotspots, which indicate areas of increased temperatures, are heavily sprinkled ...

NASA's HS3 mission spotlight: The HIRAD instrument

12 hours ago

The Hurricane Imaging Radiometer, known as HIRAD, will fly aboard one of two unmanned Global Hawk aircraft during NASA's Hurricane Severe Storm Sentinel or HS3 mission from Wallops beginning August 26 through ...

Fires in the Northern Territories July 2014

Jul 23, 2014

Environment Canada has issued a high health risk warning for Yellowknife and surrounding area because of heavy smoke in the region due to forest fires. In the image taken by the Aqua satellite, the smoke ...

User comments : 0