Mixed Prairie Grasses Better Source of Biofuel Than Corn Ethanol and Soybean Biodiesel

Dec 07, 2006
Mixed Prairie Grasses Better Source of Biofuel Than Corn Ethanol and Soybean Biodiesel
Mixed prairie grasses have emerged as a leader in the quest to produce biofuels. Credit: Cedar Creek LTER Site

Diverse mixtures of native prairie plant species have emerged as a leader in the quest to identify the best source of biomass for producing sustainable, bio-based fuel to replace petroleum.

A new study led by David Tilman, an ecologist at the University of Minnesota, shows that mixtures of native perennial grasses and other flowering plants provide more usable energy per acre than corn grain ethanol or soybean biodiesel and are far better for the environment. The research was supported by the National Science Foundation (NSF) and the University of Minnesota Initiative for Renewable Energy and the Environment.

"Biofuels made from high-diversity mixtures of prairie plants can reduce global warming by removing carbon dioxide from the atmosphere. Even when grown on infertile soils, they can provide a substantial portion of global energy needs, and leave fertile land for food production," Tilman said.

The findings are published in the Dec. 8, 2006, issue of the journal Science.

The is study based on 10 years of research at Minnesota's Cedar Creek Natural History Area, one of 26 NSF long-term ecological research (LTER) sites. It shows that degraded agricultural land planted with diverse mixtures of prairie grasses and other flowering plants produces 238 percent more bioenergy on average than the same land planted with various single prairie plant species, including switchgrass.

"This study highlights very clearly the additional benefits of taking a less-intensive management approach and maintaining higher biodiversity in the process," said Henry Gholz, NSF LTER program director. "It establishes a new baseline for evaluating the use of land for biofuel production."

Tilman and his colleagues estimate that fuel made from this prairie biomass would yield 51 percent more energy per acre than ethanol from corn grown on fertile land. Prairie plants require little energy to grow and all parts of the plant above ground are usable.

Fuels made from prairie biomass are "carbon negative," which means that producing and using them actually reduces the amount of carbon dioxide (a greenhouse gas) in the atmosphere. Prairie plants store more carbon in their roots and soil than is released by the fossil fuels needed to grow and convert them into biofuels. Using prairie biomass to make fuel would lead to the long-term removal and storage of from 1.2 to 1.8 U.S. tons of carbon dioxide per acre per year. This net removal of atmospheric carbon dioxide could continue for about 100 years, the researchers estimate.

In contrast, corn ethanol and soybean biodiesel are "carbon positive," meaning they add carbon dioxide to the atmosphere, although less than fossil fuels.

Switchgrass, which is being developed as a perennial bioenergy crop, was one of 16 species in the study. When grown by itself in poor soil, it did not perform better than other single species and gave less than a third of the bioenergy of high-diversity plots.

"Switchgrass is very productive when it's grown like corn in fertile soil with lots of fertilizer, pesticide and energy inputs, but this approach doesn't yield as much energy gain as mixed species in poor soil nor does it have the same environmental benefits," said paper co-author Jason Hill, also of the University of Minnesota.

To date, all biofuels, including cutting-edge nonfood energy crops such as switchgrass, elephant grass, hybrid poplar and hybrid willow, are produced as monocultures grown primarily in fertile soils.

The researchers estimate that growing mixed prairie grasses on all of the world's degraded land could produce enough bioenergy to replace 13 percent of global petroleum consumption and 19 percent of global electricity consumption.

The practice of using degraded land to grow mixed prairie grasses for biofuels could provide stable production of energy and have additional benefits, such as renewed soil fertility, cleaner ground and surface waters, preservation of wildlife habitats, and recreational opportunities.

Source: NSF

Explore further: Sniffing out a partner at a London pheromone party

add to favorites email to friend print save as pdf

Related Stories

Physicists discuss quantum pigeonhole principle

11 hours ago

The pigeonhole principle: "If you put three pigeons in two pigeonholes at least two of the pigeons end up in the same hole." So where's the argument? Physicists say there is an important argument. While the ...

Giant crater in Russia's far north sparks mystery

14 hours ago

A vast crater discovered in a remote region of Siberia known to locals as "the end of the world" is causing a sensation in Russia, with a group of scientists being sent to investigate.

NASA Mars spacecraft prepare for close comet flyby

14 hours ago

NASA is taking steps to protect its Mars orbiters, while preserving opportunities to gather valuable scientific data, as Comet C/2013 A1 Siding Spring heads toward a close flyby of Mars on Oct. 19.

Recommended for you

How to win a Tour de France sprint

Jul 22, 2014

The final dash to the line in a Tour de France sprint finish may appear to the bystander to be a mess of bodies trying to cram into the width of a road, but there is a high degree of strategy involved. It ...

User comments : 0