Researchers discover hydrogen can form multicenter bonds

Dec 04, 2006

Researchers at the University of California, Santa Barbara have shown that, under the right circumstances, hydrogen can form multicenter bonds, where one hydrogen atom simultaneously bonds to as many as four or six other atoms. Tested for hydrogen in metal oxides, the discovery could have a broad range of technological impact.

The research is available today in the advance online publication of Nature Materials.

Professor Chris G. Van de Walle and Project Scientist Anderson Janotti, both of the Materials Department of the College of Engineering at UC Santa Barbara, have shown that multi-coordinated hydrogen is a likely explanation for electronic conductivity in metal oxides. Metal oxides are widely used in everything from sunscreen to sensors.

Hydrogen, the simplest of the elements (consisting of one proton and one electron) is typically expected to exhibit simple chemistry when forming molecules or solids. Hydrogen atoms almost always form a single bond to just one other atom, leading to a two-center bond with two electrons. Exceptions to the rule are rare; there are only a few cases when hydrogen bonds simultaneously to two other atoms, forming a three-center bond.

Hydrogen can replace an oxygen atom and form a multicenter bond with adjacent metal atoms. For example, in ZnO, hydrogen equally bonds to the four surrounding Zn atoms, becoming fourfold coordinated. These multicenter bonds are highly stable and explain previously puzzling variations in conductivity as a function of temperature and oxygen pressure. The results suggest that hydrogen can be used as a substitutional dopant in oxides, a concept that is counterintuitive and should be of wide interest to researchers.

Source: University of California - Santa Barbara

Explore further: Researchers find tin selenide shows promise for efficiently converting waste heat into electrical energy

add to favorites email to friend print save as pdf

Related Stories

Building better catalysts for splitting water

Apr 02, 2014

(Phys.org) —The dream of a hydrogen economy—a world run on H2 gas, free from the pollution and politics of fossil fuels—may depend on developing an energy-efficient strategy for splitting water into ...

Carbon nanotubes grow in combustion flames

Apr 01, 2014

Professor Stephan Irle of the Institute of Transformative Bio-Molecules (WPI-ITbM) at Nagoya University and co-workers at Kyoto University, Oak Ridge National Lab (ORNL), and Chinese research institutions ...

Turning graphite into diamond

Mar 28, 2014

(Phys.org) —A research team led by SLAC scientists has uncovered a potential new route to produce thin diamond films for a variety of industrial applications, from cutting tools to electronic devices to ...

Recommended for you

Novel technique opens door to better solar cells

Apr 14, 2014

A team of scientists, led by Assistant Professor Andrivo Rusydi from the Department of Physics at the National University of Singapore's (NUS) Faculty of Science, has successfully developed a technique to ...

User comments : 0

More news stories

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...