Guiding an Atom Laser

Nov 24, 2006 feature

One of the biggest differences between photons and atoms is that the latter are massive particles, making gravity is a huge factor. It can be seen as an advantage when designing new high accuracy atom interferometers based inertial sensors, but can be a major drawback when controlling atom laser beams. “Gravity makes for higher velocity,” William Guerin explains to, “and that means wavelengths become small.”

According to Guerin, a scientist at the Institute d'Optique Graduate School in Palaiseau (south of Paris), in order for an atom laser to be practicable for many applications, a method for creating longer wavelengths needs to be found. And, with his colleagues from Aspect's Atom Optics Group of the Laboratoire Charles Fabry, he has. An article published in Physical Review Letters by Guerin and his coworkers Riou and Gaebler from the team led by Josse and Bouyer, is titled “Guided Quasicontinuous Atom Laser”; it demonstrates how this longer wavelength can be achieved.

“By making our atom laser into a wave carrier, we can get rid of the acceleration of gravity,” says Guerin. “We can create an atom laser with a constant.” The French team’s Letter describes how such a laser works with trapped Bose-Einstein condensate (BEC):

“The BEC, in a state sensitive to both trapping potentials, is submitted to a rf outcoupler yielding atoms in a state sensitive only to the optical potential, resulting in an atom laser propagating along the weak confining axis of the optical trap.”

“By using quasicontinuous outcoupling,” Guerin further explains, “we can get a beam with much less interaction.” A guided quasicontinuous atom laser, such the one described, would allow for better atomic motion control during propagation. Better atomic control would pave the way for more coherent atom sources for use in atom interferometry. Additionally, this set-up for a guided atom laser has the potential to provide a variety of other useful future applications. Quantum transport is another field that could benefit from the work performed by the team led by Josse and Bouyer.

The members of the team, though, are especially interested in the interferometry aspects illuminated by this new type of atom laser: “We could use this scheme not only to guide atom laser beams, but also to separate and then recombine them to get an interferometer, which can be used to measure rotations or accelerations.” Guerin also points out that such interferometer could also be realized on atom chips.

Designs that can produce atom-wave interferometry can yield progress in sensor technology. One of these technologies, says Guerin, includes “Creating a gyroscope with coherent atomic beams.” The applications and information that could come from the work by the team in France are varied and many.

But rather than getting too carried away with the future, Guerin sticks with the basics. “There are two main points that we have realized because of this work,” he says. “First, we have a well-defined and large wavelength. This is new.” He continues his explanation: “And, second, we can control the amounts of interaction. It is great that we can control the flux of the atom laser, by controlling the flux, we control the density inside the beam.” And it is great for the world of atomic science as well.

By Miranda Marquit, Copyright 2006

Explore further: And so they beat on, flagella against the cantilever

add to favorites email to friend print save as pdf

Related Stories

Is random lasing possible with a cold atom cloud?

May 18, 2009

( -- Random lasing, Robin Kaiser tells, is like standard lasing, with a little bit of a twist: “You don’t know the direction the photons will go, as you do with a more standard laser. This is bec ...

Recommended for you

And so they beat on, flagella against the cantilever

22 hours ago

A team of researchers at Boston University and Stanford University School of Medicine has developed a new model to study the motion patterns of bacteria in real time and to determine how these motions relate ...

Tandem microwave destroys hazmat, disinfects

Sep 16, 2014

Dangerous materials can be destroyed, bacteria spores can be disinfected, and information can be collected that reveals the country of origin of radiological isotopes - all of this due to a commercial microwave ...

Cornell theorists continue the search for supersymmetry

Sep 16, 2014

( —It was a breakthrough with profound implications for the world as we know it: the Higgs boson, the elementary particle that gives all other particles their mass, discovered at the Large Hadron ...

How did evolution optimize circadian clocks?

Sep 12, 2014

( —From cyanobacteria to humans, many terrestrial species have acquired circadian rhythms that adapt to sunlight in order to increase survival rates. Studies have shown that the circadian clocks ...

User comments : 0