Learning the magnetic ropes

Nov 17, 2006

At the Sun's edge, in a region called the heliosphere, magnetic fields and electrical currents align and twist themselves in massive three-dimensional structures called "magnetic flux ropes." As these ropes kink, they become twisted and unstable.

Occasionally, one of the rope's ends--which was previously "tied" to the Sun's surface--breaks loose, ejecting electrically charged gas, or plasma, and producing solar flares that can wreak havoc with everything from satellites to electrical power grids. Once only observed remotely, flux ropes are now being created in the laboratory, making it possible to tie experimental data to prior theoretical analyses.

In a recent Physical Review Letters paper, members of the Los Alamos Relaxation Scaling Experiment, describe their studies of these bench-top flux ropes. These studies of the magnetic structure of kinking, rotating, and coalescing flux ropes have shown that having a free rope end and a fluid flow along the length of the flux rope substantially reduces the electrical current required to drive a property known as kink stability and induces rotation of the helically unstable flux rope.

According to Tom Intrator, principal investigator for the Relaxation Scaling Experiment, "Because past models of the Sun's coronal field have been based principally on remote observations, this work is valuable as a close-up study of the dynamical behavior of flux ropes. Understanding how the coexistence and alignment of magnetic fields and currents work in flux ropes is an important step in understanding the effects of flux ropes in everything from the Earth's magnetosphere to incredibly distant and huge astrophysical jets."

The Relaxation Scaling Experiment uses a small plasma gun in a vacuum to produce unstable flux ropes in the form of plasma-current filaments, like flexible wires composed of plasma. These "mini ropes" are then photographed and studied with probe measurements as they wind helically around an imaginary central axis. The experimental system provides a relatively simple means for systematically characterizing the evolution of these short-lived rope structures.

In addition to Intrator, the Relaxation Scaling Experiment team includes Ivo Furno, Leonid Dorf, T. Madziwa-Nussinov, Xuan Sun, and Giovanni Lapenta from Los Alamos, and Dmitri Ryutov from Lawrence Livermore National Laboratory. At Los Alamos, the experiment is supported by Laboratory-Directed Research and Development funding.

Source: Los Alamos National Laboratory

Explore further: New insights found in black hole collisions

add to favorites email to friend print save as pdf

Related Stories

SOHO and Hinode offer new insight into solar eruptions

Jan 23, 2015

The sun is home to the largest explosions in the solar system. For example, it regularly produces huge eruptions known as coronal mass ejections – when billions of tons of solar material erupt off the sun, ...

'Twisted rope' clue to dangerous solar storms

Oct 22, 2014

A "twisted rope" of magnetically-charged energy precedes solar storms that have the potential to damage satellites and electricity grids, French scientists said on Wednesday.

Discovering a hidden source of solar surges

Jun 03, 2014

Cutting-edge observations with the 1.6-meter telescope at Big Bear Solar Observatory (BBSO) in California have taken research into the structure and activity of the Sun to new levels of understanding. Operated ...

Robots inspect cables

Jul 01, 2013

The bearer cables and tethers of bridges, elevators, and cable cars are exposed to high levels of stress. For this reason, their functional reliability must be monitored on a regular basis. A new robot recognizes ...

Scientists 'see' flux rope formation for the first time

Apr 03, 2013

(Phys.org) —Naval Research Laboratory scientists have observed, for the very first time, the formation of solar flux ropes, which are a type of solar magnetic field. Models of flux ropes have been drawn ...

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.