BaBar Steadies Omega-minus Spin

Nov 06, 2006
BaBar Steadies Omega-minus Spin
The first evidence of the omega-minus particle in a bubble chamber. Image courtesy of Brookhaven National Laboratory

If you snatch a copy of the Particle Data Book from your colleague's back pocket and flip to the entry for the Omega-minus particle, you'll see that the very first line says the spin is "not yet measured." That entry may soon be changed. The BaBar collaboration has established that the spin of the Omega-minus, a particle that was discovered more than 40 years ago, is 3/2.

"The Omega-minus has been around for a long time and it's got a very interesting history," says BaBar collaborator Bill Dunwoodie. "It was a confirmation of Murray Gell-Mann's ideas about broken symmetry that led eventually to the quark model."

The analysis of BaBar data was primarily conducted by Veronique Ziegler, a graduate student from the University of Iowa, with Dunwoodie. The findings are published in the Sept. 15 issue of Physical Review Letters.

Bubble chamber experiments, like the one that found the first Omega-minus particle in 1964, can produce only a small number of the particles, and the collisions that produced them were not well understood. By studying the angular distribution of the particles produced by the Omega-minus when it decayed, physicists obtained information on the Omega-minus's spin, but they were unable to say anything more than that it did not have spin 1/2.

Ziegler studied Omega-minus particles resulting from the decay of charm baryons that were produced in electron-positron collisions in BaBar.

"These particles are extremely rare, but thanks to the enormous amount and quality of data BaBar has produced, we were able to carry out this analysis," Ziegler said.

In 1962, there were nine baryons (particles containing three quarks) believed to have spin 3/2. In a comment made during a conference at CERN, Murray Gell-Mann predicted there was a tenth particle that had yet to be seen. He named it Omega-minus and predicted its mass and decay properties. He even gave a recipe for the production and observation of the Omega-minus, namely by means of high-energy collisions between negative kaons and the protons in a liquid hydrogen bubble chamber.

Two years later, the short 2-centimeter track of an Omega-minus particle was seen in a photograph from the 80" bubble chamber at Brookhaven National Laboratory. The particle had almost exactly the mass that Gell-Mann had predicted. Only one month previously, Gell-Mann had submitted the first paper outlining the quark model.

Ziegler's analysis has been well-received. One reviewer wrote, "This paper is an instant classic. It will be studied by future generations of graduate students."

Source: By Rachel Courtland, Stanford Linear Accelerator Center

Explore further: X-rays probe LHC for cause of short circuit

add to favorites email to friend print save as pdf

Related Stories

Using 19th century technology to time travel to the stars

2 minutes ago

In the late 19th century, astronomers developed the technique of capturing telescopic images of stars and galaxies on glass photographic plates. This allowed them to study the night sky in detail. Over 500,000 ...

Recommended for you

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.