Spiders’ unspun silk flows easier the faster it is sheared

Nov 01, 2006
Nephila Senegalensis (Golden orb weaving spider).Credit: Oxford Silk Group
Nephila Senegalensis (Golden orb weaving spider).Credit: Oxford Silk Group

Oxford researchers have discovered that spiders and silkworms spin their fibres using methods that are not all that different from commercial spinning.

Professor Fritz Vollrath and colleagues, in the Silk Research Group at the Department of Zoology, have been able to demonstrate that the spinning ‘dope’ or unspun silk behaves just like a traditional, commercial semi-crystalline polymer, as published today in Nature Materials. This discovery has important implications for industry in their attempt to spin artificial silk threads from protein feed-stocks.

The scientists took dope from the glands of spiders and silkworms, and subjected these precursor silks to shear forces similar to those they would encounter in the animals' spinning ducts. Surprisingly, both pre-silks behaved identically under shear, and both flowed easier the faster they were sheared. This is a phenomenon called ‘shear thinning’ and was first described in the 1920’s for molten plastics.

The observation that both silks – having originated separately and evolved over hundreds of millions of years of independent evolution - show identical shear thinning behaviour suggests the key importance of this flow -response for spinning in nature. Silks are spun with water as a solvent, as well as ambient pressures and temperatures, yet they are fibres with material properties that can put top commercial fibres to shame.

Professor Fritz Vollrath said: ‘Copying the spider's trick of making the silk proteins, and spinning them into these tough fibres has been a dream for a long time. The discovery that the spinning process relies on well understood flow physics is a further step towards realising this dream.’

Researchers from the Oxford Silk Group have previously been able to show that nature has evolved some clever tricks to facilitate the mechanics of the spider’s extrusion system.

Lead author Chris Holland, from the Oxford Silk Group, said:’ Using techniques originally developed for the physical sciences and applying them to study nature’s way of creating these high performance materials opens new doors into understanding not only how silks may have evolved, but also how we may take inspiration from them to improve our own materials‘.

Source: University of Oxford

Explore further: Researchers find tin selenide shows promise for efficiently converting waste heat into electrical energy

add to favorites email to friend print save as pdf

Related Stories

Paralysis promises smart silk technology

Sep 19, 2013

(Phys.org) —Oxford University researchers have harnessed the natural defence mechanism of silkworms, which causes paralysis, in what is a major step towards the large-scale production of silks with tailor-made ...

Reeling in a wild silk harvest

May 17, 2011

(PhysOrg.com) -- A new way of treating wild silkmoth cocoons could see new silk industries springing up wherever wild silk is found in Africa and South America, as well as silk?s Asian heartland.

Allure of pineapple

Oct 04, 2010

Alluring dresses from pineapple? Scientists in Malaysia are looking into the potential of another 'cotton' – the pineapple. Jamil Salleh of UiTM, Shah Alam, Malaysia is to asses techniques to extract the long fibres ...

Power thrust for spider silk

Apr 24, 2009

(PhysOrg.com) -- Spiderman would definitely have an easier time of things with this spider silk - for example, if he had to stop a getaway car moving off at 100 kilometres per hour. A five-millimetre-thick ...

Recommended for you

Novel technique opens door to better solar cells

Apr 14, 2014

A team of scientists, led by Assistant Professor Andrivo Rusydi from the Department of Physics at the National University of Singapore's (NUS) Faculty of Science, has successfully developed a technique to ...

Probing metal solidification nondestructively

Apr 14, 2014

(Phys.org) —Los Alamos researchers and collaborators have used nondestructive imaging techniques to study the solidification of metal alloy samples. The team used complementary methods of proton radiography ...

User comments : 0

More news stories

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...