Researchers Develop Nanoparticle Sensor

Oct 11, 2006

(AP) -- New Mexico Tech researchers have developed a sensor that uses the light-emitting properties of some nanoparticles to analyze and identify individual components of single strands of DNA and RNA.

Chemistry assistant professor Peng Zhang said team members hope they can refine the emerging technology and eventually adapt the tiny sensors to detect cancer cells in their early stages and to target and destroy cancerous cells and tissue.

"I am very excited about the potential for this new application, especially since the preliminary phase of this study has shown that we can identify cancer cells," Zhang said. "The next step will be to modify these nanoparticle sensors ... and actually kill cancer cells with them."

The nucleotide sensor design, described in a technical paper to be published in the Journal of the American Chemical Society, is versatile and easy to implement in DNA and RNA research studies and analyses in molecular biology, genetics and molecular medicine, the researchers said. The co-authors are Zhang, biology professor Snezna Rogelj and Tech students Khoi Nguyen and Damon Wheeler.

The sensor is based on a type of nanomaterial - materials that are microscopic - with unique "photon upconversion" properties.

Zhang said it "displays high sensitivity and specificity" - attributes that will be important in studying and treating many genetic-based diseases, such as sickle cell anemia.

© 2006 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

Explore further: Synthetic virus developed to deliver a new generation of medicines

add to favorites email to friend print save as pdf

Related Stories

Deploying exosomes to win a battle of the sexes

Aug 25, 2014

There are many biological tools that help animals ensure reproductive success. A new study in The Journal of Cell Biology provides further detail into how one such mechanism enables male fruit flies to imp ...

Tilted acoustic tweezers separate cells gently

Aug 25, 2014

Precise, gentle and efficient cell separation from a device the size of a cell phone may be possible thanks to tilt-angle standing surface acoustic waves, according to a team of engineers.

A better understanding of cell to cell communication

Aug 22, 2014

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

Recommended for you

Tiny graphene drum could form future quantum memory

Aug 28, 2014

Scientists from TU Delft's Kavli Institute of Nanoscience have demonstrated that they can detect extremely small changes in position and forces on very small drums of graphene. Graphene drums have great potential ...

User comments : 0