New All-Optical Modulator Paves the Way to Ultrafast Communications and Computing

Oct 06, 2006

In the 1950s, a revolution began when glass and metal vacuum tubes were replaced with tiny and cheap transistors. Today, for the cost of a single vacuum tube, you can buy a computer chip with literally millions of transistors.

Today, physicists and engineers are looking to accomplish a similar shrinking act with the components of optical systems--lasers, modulators, detectors, and more--that are used to manipulate light. The goal: designing ultrafast computing and communications devices that use photons of light, instead of electrons, to transmit information and perform computations, all with unprecedented speed.

Researchers at the California Institute of Technology have now taken a significant step toward the creation of all-optical logic devices by developing a new silicon and polymer waveguide that can manipulate light signals using light, at speeds almost 100 times as fast as conventional electron-based optical modulators.

The all-optical modulator consists of a silicon waveguide, about one centimeter long and a few microns wide, that is blanketed with a novel nonlinear polymer developed at the University of Washington. As light passes through the waveguide, it is split into two signals, an input, or "gate," beam and a source beam. "We can manipulate where the source goes by turning on and off the gate," says Michael Hochberg, a postdoctoral researcher at Caltech. The modulator could be switched on and off a trillion times or more per second.

Hochberg and Tom Baehr-Jones developed the system, which is described in the September issue of the journal Nature Materials, with Caltech colleague Axel Scherer, the Neches Professor of Electrical Engineering, Applied Physics, and Physics. The optical polymers were developed in the laboratories of Larry Dalton and Alex K. Y. Jen at the University of Washington.

Because the system is silicon based, it is easily scalable. "We can add complexity through standard silicon processing," Hochberg says, which means the system "provides a path toward eventually making optical processors. Because all-optical devices are intrinsically faster, you could do computations at terahertz speeds, rather than gigahertz."

"In a few years, we hope to take a device like this and make all-optical transistors that give us signal gain-which means that you can put in a small amount of power on the gate and get out a large amount of power change on the drain, just as regular transistors do. Once we can do that, the whole world opens up," Hochberg says.

Source: Caltech

Explore further: Pseudoparticles travel through photoactive material

Related Stories

Recommended for you

Pseudoparticles travel through photoactive material

Apr 23, 2015

Researchers of Karlsruhe Institute of Technology (KIT) have unveiled an important step in the conversion of light into storable energy: Together with scientists of the Fritz Haber Institute in Berlin and ...

From metal to insulator and back again

Apr 22, 2015

New work from Carnegie's Russell Hemley and Ivan Naumov hones in on the physics underlying the recently discovered fact that some metals stop being metallic under pressure. Their work is published in Physical Re ...

Electron spin brings order to high entropy alloys

Apr 22, 2015

Researchers from North Carolina State University have discovered that electron spin brings a previously unknown degree of order to the high entropy alloy nickel iron chromium cobalt (NiFeCrCo) - and may play ...

Expanding the reach of metallic glass

Apr 22, 2015

Metallic glass, a class of materials that offers both pliability and strength, is poised for a friendly takeover of the chemical landscape.

Electrons move like light in three-dimensional solid

Apr 22, 2015

Electrons were observed to travel in a solid at an unusually high velocity, which remained the same independent of the electron energy. This anomalous light-like behavior is found in special two-dimensional ...

Quantum model helps solve mysteries of water

Apr 20, 2015

Water is one of the most common and extensively studied substances on earth. It is vital for all known forms of life but its unique behaviour has yet to be explained in terms of the properties of individual ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.