Through Saturn's atmosphere

Oct 05, 2006
A natural color view of Saturn taken by the Cassini spacecraft on its approach to the planet
A natural color view of Saturn taken by the Cassini spacecraft on its approach to the planet

Saturn is famous for its rings. Nevertheless, it does have other, characteristic if not unique, features – its atmosphere, for example. The prime aim of the Planetary Science Group at the University of the Basque Country (EHU-UPV) in Spain is, in fact, to study the atmospheres of the planets: their cloud formations and fogs, how these are distributed vertically in the atmosphere, their movement and their meteorology in general.

To study Saturn's atmosphere, images from the Hubble space telescope were used. There were numerous photographs – more than 200 were taken over the ten-year period from 1994 to 2004. These are pictures that enabled us to find out what the planet is like and what it looks like, observed in different wavelengths. This is the observational part of the study.

But, a numerical simulation can also be undertaken. This is based on the use of numerical codes, which reproduce the manner in which photons enter the atmosphere, and how they are emitted in different directions until some of them are absorbed and others emitted once again into space, i.e. reflected by the atmosphere.

These numerical codes have been developed over the past few years by a team from the EHU-UPV who, on analysing this light reflected by the atmosphere, were able to infer what particles are behind this reflection, i.e. by observing the reflected light, they could determine the number of cloud layers, their depth, the optical properties thereof, and so on. In this way, Saturn's clouds and their evolution were studied over ten years, a relatively long time for a study of this nature.

Wind variation

Once the structural characteristics of the atmosphere were determined, other members of the team were able to evaluate the altitude at which these winds were located on the giant planet. This is of great importance in understanding the meteorology of the planet, given that it provides a three-dimensional image of its atmosphere.

In 2003, the Planetary Science Group, with images from the Hubble space telescope, observed an intense variation of the winds in Saturn's atmosphere at its equator - in comparison to the previous measurements by the Voyager space probe. This was something that nobody really expected.

The winds at the equator of Saturn, measured by the Voyager space probe at the beginning of the 80s, blew with an enormous force - about 1700 km/h. Nevertheless, in 2003, a drop of 40% in this value was observed, as if a brake had been applied to the winds. Subsequently, when the Cassini probe arrived in 2004, it was observed that, at certain wavelengths, there were slower winds and, at others, more rapid winds. Thus, the hypothesis was put forward that the winds slackened according to altitude – the winds blowing at higher altitudes were less intense than those at lower altitudes. This, in principle, would have been expected, given that atmospheric winds generally vary with height. The EHU-UPV team quantified this hypothesis in such a way as to make it a valid one, based on measurements of the variation of the wind as a function of altitude.

Nevertheless, compared with the winds measured in the Voyager period, it was shown, effectively, that there had been an important variation. The fact is that, in 1990, there was an enormous storm at the equator of Saturn. On Saturn there is a phenomenon that repeats itself every 30 years approximately – a huge storm that disturbs an enormous region of the planet, a storm several times bigger than our own planet. The Planetary Science Group at EHU-UPV are currently trying, amongst other endeavours, to analyse how this type of phenomena might affect an atmosphere like that on planet Saturn.

Source: Elhuyar Fundazioa

Explore further: Planck helps to understand the macrostructure of the universe

Related Stories

Protecting Earth from space weather

Mar 20, 2015

This week's spectacular glowing auroras in the night sky further south than usual highlighted the effect that 'space weather' can have on Earth.

Dust cloud, aurora detected around Mars

Mar 18, 2015

A NASA spacecraft circling Mars has detected a mysterious dust cloud and a vibrant aurora, both unexpected phenomena on Earth's neighboring planet, researchers said Wednesday.

Image: Solar corona viewed by Proba-2

Mar 17, 2015

This snapshot of our constantly changing Sun catches looping filaments and energetic eruptions on their outward journey from our star's turbulent surface.

Recommended for you

Image: The tumultuous heart of the Large Magellanic Cloud

11 hours ago

A scene of jagged fiery peaks, turbulent magma-like clouds and fiercely hot bursts of bright light. Although this may be reminiscent of a raging fire or the heart of a volcano, it actually shows a cold cosmic ...

Rocky planets may orbit many double stars

Mar 30, 2015

Luke Skywalker's home in "Star Wars" is the desert planet Tatooine, with twin sunsets because it orbits two stars. So far, only uninhabitable gas-giant planets have been identified circling such binary stars, ...

Is the universe finite or infinite?

Mar 27, 2015

Two possiblities exist: either the Universe is finite and has a size, or it's infinite and goes on forever. Both possibilities have mind-bending implications.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.