Detecting Cancer with Silica Nanoparticles

Sep 18, 2006

Tumor necrosis factor-alpha is a widely accepted biomarker for cancer, but the minute amounts of this protein circulating in blood makes detecting the molecule and measuring its concentration accurately a technological challenge.

Using silica nanoparticles labeled with the molecule guanine, researchers at the Pacific Northwest National Laboratory have now created a simple and inexpensive electrochemical method that detects tumor necrosis factor-alpha (TNF-æ) at clinically useful levels. Moreover, this assay is amenable to miniaturization, suggesting that it could be easily incorporated into a microfluidics-based assay system.

Reporting its work in the journal Analytical Chemistry, a research team headed by Yuehe Lin, Ph.D., loaded guanine molecules onto the surface of silica nanobeads that also contained a chemical anchor known as avidin. They also attached biotin, which binds with extraordinary strength to avidin, to an antibody that binds to the TNF-æ protein. The researchers attached a second antibody, one that binds to a different part of the TNF-æ protein, to a carbon electrode, which functions as the electrochemical sensor.

When TNF-æ is present in a solution added to the antibody-labeled electrode, it binds to the antibody. Adding the second antibody produces a sandwich around the TNF-æ molecule. At this point, the researchers then added their labeled silica nanoparticle, which binds to the antibody-TNF-æ sandwich. In a final step, the investigators added a molecule that reacts with the guanines on the nanoparticle, creating an electrical current that the electrode senses. The current flowing into the electrode is proportional to the amount of TNF-æ bound to the first antibody. Experiments with this system showed that the limit of detection for the device is approximately 2 picomolar, well within the range needed to detect physiological levels of TNF-æ.

This work is detailed in a paper titled, “Sensitive immunoassay of a biomarker tumor necrosis factor-æ based on poly(guanine)-functionalized silica nanoparticle label.” This paper was published online in advance of print publication. An abstract of this paper is available at the journal’s website.

Source: National Cancer Institute

Explore further: Nanocontainers for nanocargo: Delivering genes and proteins for cellular imaging, genetic medicine and cancer therapy

add to favorites email to friend print save as pdf

Related Stories

Wireless sensor transmits tumor pressure

12 hours ago

The interstitial pressure inside a tumor is often remarkably high compared to normal tissues and is thought to impede the delivery of chemotherapeutic agents as well as decrease the effectiveness of radiation ...

A nanosized hydrogen generator

13 hours ago

(Phys.org) —Researchers at the US Department of Energy's (DOE) Argonne National Laboratory have created a small scale "hydrogen generator" that uses light and a two-dimensional graphene platform to boost ...

Tim Cook puts personal touch on iPhone 6 launch

13 hours ago

Apple chief Tim Cook personally kicked off sales of the iPhone 6, joining in "selfies" and shaking hands with customers Friday outside the company's store near his Silicon Valley home.

Recommended for you

A nanosized hydrogen generator

Sep 20, 2014

(Phys.org) —Researchers at the US Department of Energy's (DOE) Argonne National Laboratory have created a small scale "hydrogen generator" that uses light and a two-dimensional graphene platform to boost ...

User comments : 0