Detecting Cancer with Silica Nanoparticles

Sep 18, 2006

Tumor necrosis factor-alpha is a widely accepted biomarker for cancer, but the minute amounts of this protein circulating in blood makes detecting the molecule and measuring its concentration accurately a technological challenge.

Using silica nanoparticles labeled with the molecule guanine, researchers at the Pacific Northwest National Laboratory have now created a simple and inexpensive electrochemical method that detects tumor necrosis factor-alpha (TNF-æ) at clinically useful levels. Moreover, this assay is amenable to miniaturization, suggesting that it could be easily incorporated into a microfluidics-based assay system.

Reporting its work in the journal Analytical Chemistry, a research team headed by Yuehe Lin, Ph.D., loaded guanine molecules onto the surface of silica nanobeads that also contained a chemical anchor known as avidin. They also attached biotin, which binds with extraordinary strength to avidin, to an antibody that binds to the TNF-æ protein. The researchers attached a second antibody, one that binds to a different part of the TNF-æ protein, to a carbon electrode, which functions as the electrochemical sensor.

When TNF-æ is present in a solution added to the antibody-labeled electrode, it binds to the antibody. Adding the second antibody produces a sandwich around the TNF-æ molecule. At this point, the researchers then added their labeled silica nanoparticle, which binds to the antibody-TNF-æ sandwich. In a final step, the investigators added a molecule that reacts with the guanines on the nanoparticle, creating an electrical current that the electrode senses. The current flowing into the electrode is proportional to the amount of TNF-æ bound to the first antibody. Experiments with this system showed that the limit of detection for the device is approximately 2 picomolar, well within the range needed to detect physiological levels of TNF-æ.

This work is detailed in a paper titled, “Sensitive immunoassay of a biomarker tumor necrosis factor-æ based on poly(guanine)-functionalized silica nanoparticle label.” This paper was published online in advance of print publication. An abstract of this paper is available at the journal’s website.

Source: National Cancer Institute

Explore further: Cut flowers last longer with silver nanotechnology

add to favorites email to friend print save as pdf

Related Stories

Coal gas boom in China holds climate change risks

48 minutes ago

Deep in the hilly grasslands of remote Inner Mongolia, twin smoke stacks rise more than 200 feet into the sky, their steam and sulfur billowing over herds of sheep and cattle. Both day and night, the rumble ...

Fossil arthropod went on the hunt for its prey

1 hour ago

A new species of carnivorous crustacean has been identified, which roamed the seas 435 million years ago, grasping its prey with spiny limbs before devouring it. The fossil is described and details of its lifestyle are published ...

Water crisis threatens thirsty Sao Paulo

8 hours ago

Sao Paulo is thirsty. A severe drought is hitting Brazil's largest city and thriving economic capital with no end in sight, threatening the municipal water supply to millions of people.

Canada to push Arctic claim in Europe

9 hours ago

Canada's top diplomat will discuss the Arctic with his Scandinavian counterparts in Denmark and Norway next week, it was announced Thursday, a trip that will raise suspicions in Russia.

Recommended for you

Cut flowers last longer with silver nanotechnology

21 hours ago

Once cut and dunked in a vase of water, flowers are susceptible to bacterial growth that shortens the length of time one has to enjoy the blooms. A few silver nanoparticles sprinkled into the water, might be the answer to ...

Relaxing DNA strands by using nano-channels

Aug 20, 2014

A simple and effective way of unravelling the often tangled mass of DNA is to 'thread' the strand into a nano-channel. A study carried out with the participation of the International School for Advanced Studies ...

Сalculations with nanoscale smart particles

Aug 19, 2014

Researchers from the Institute of General Physics of the Russian Academy of Sciences, the Institute of Bioorganic Chemistry of the Russian Academy of Sciences and MIPT have made an important step towards ...

Attack Ebola on a nanoscale

Aug 15, 2014

(Phys.org) —The Ebola virus outbreak in West Africa has claimed more than 900 lives since February and has infected thousands more. Countries such as Nigeria and Liberia have declared health emergencies, ...

User comments : 0