Detecting Cancer with Silica Nanoparticles

Sep 18, 2006

Tumor necrosis factor-alpha is a widely accepted biomarker for cancer, but the minute amounts of this protein circulating in blood makes detecting the molecule and measuring its concentration accurately a technological challenge.

Using silica nanoparticles labeled with the molecule guanine, researchers at the Pacific Northwest National Laboratory have now created a simple and inexpensive electrochemical method that detects tumor necrosis factor-alpha (TNF-æ) at clinically useful levels. Moreover, this assay is amenable to miniaturization, suggesting that it could be easily incorporated into a microfluidics-based assay system.

Reporting its work in the journal Analytical Chemistry, a research team headed by Yuehe Lin, Ph.D., loaded guanine molecules onto the surface of silica nanobeads that also contained a chemical anchor known as avidin. They also attached biotin, which binds with extraordinary strength to avidin, to an antibody that binds to the TNF-æ protein. The researchers attached a second antibody, one that binds to a different part of the TNF-æ protein, to a carbon electrode, which functions as the electrochemical sensor.

When TNF-æ is present in a solution added to the antibody-labeled electrode, it binds to the antibody. Adding the second antibody produces a sandwich around the TNF-æ molecule. At this point, the researchers then added their labeled silica nanoparticle, which binds to the antibody-TNF-æ sandwich. In a final step, the investigators added a molecule that reacts with the guanines on the nanoparticle, creating an electrical current that the electrode senses. The current flowing into the electrode is proportional to the amount of TNF-æ bound to the first antibody. Experiments with this system showed that the limit of detection for the device is approximately 2 picomolar, well within the range needed to detect physiological levels of TNF-æ.

This work is detailed in a paper titled, “Sensitive immunoassay of a biomarker tumor necrosis factor-æ based on poly(guanine)-functionalized silica nanoparticle label.” This paper was published online in advance of print publication. An abstract of this paper is available at the journal’s website.

Source: National Cancer Institute

Explore further: Research reveals how our bodies keep unwelcome visitors out of cell nuclei

add to favorites email to friend print save as pdf

Related Stories

How the hummingbird achieves its aerobatic feats

1 hour ago

(Phys.org) —The sight of a tiny hummingbird hovering in front of a flower and then darting to another with lightning speed amazes and delights. But it also leaves watchers with a persistent question: How ...

'Mind the gap' between atomically thin materials

2 hours ago

In subway stations around London, the warning to "Mind the Gap" helps commuters keep from stepping into empty space as they leave the train. When it comes to engineering single-layer atomic structures, minding ...

Seychelles poachers go nutty for erotic shaped seed

2 hours ago

Under cover of darkness in the steamy jungles of the Seychelles thieves creep out to harvest the sizeable and valuable nuts of the famous coco de mer palm, and their activities are threatening its long-term ...

Recommended for you

Study shows graphene able to withstand a speeding bullet

13 hours ago

(Phys.org)—A team of researchers working at Rice University in the U.S. has demonstrated that graphene is better able to withstand the impact of a bullet than either steel or Kevlar. In their paper published ...

Nanomaterials to preserve ancient works of art

Nov 27, 2014

Little would we know about history if it weren't for books and works of art. But as time goes by, conserving this evidence of the past is becoming more and more of a struggle. Could this all change thanks ...

Learning anti-microbial physics from cicada

Nov 27, 2014

(Phys.org) —Inspired by the wing structure of a small fly, an NPL-led research team developed nano-patterned surfaces that resist bacterial adhesion while supporting the growth of human cells.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.