Putting the fuel in fuel cells

Sep 12, 2006

Ammonia borane holds promise as a chemical compound to store and release hydrogen in fuel cell-powered vehicles – and it appears stable enough to offset some safety concerns. These findings were presented by Pacific Northwest National Laboratory researcher Scot Rassat at the national meeting of the American Chemical Society.

High efficiency fuel cells are envisioned as a way to reduce dependence on foreign oil and reduce harmful gas emissions – but they require hydrogen as a power source.

For its relatively light weight, ammonia borane contains a large fraction of hydrogen that can be released as a gas – and it is a stable solid at room temperature. This material can release hydrogen for fuel cell operation by heating it to temperatures near the boiling point of water.

But how does the material hold up to warm temperatures – for example, in a car parked in the hot desert sun? PNNL and Rohm and HAAS Company researchers measured heat flow and temperature over several days to evaluate potential safety issues associated with premature release of hydrogen gas when fuel is stored on-board at relatively high temperatures.

The experiments and calculations both indicate that the stability of ammonia borane relates to its purity and that it can remain stable for many days or longer in high temperatures.

Their research also will help determine if auxiliary cooling is required to minimize the inadvertent release of hydrogen in the tank and keep the vehicle safe.

Source: Pacific Northwest National Laboratory

Explore further: How do liquid foams block sound?

add to favorites email to friend print save as pdf

Related Stories

NREL driving research on hydrogen fuel cells

Mar 25, 2014

Hydrogen fuel cell electric vehicles (FCEV) were the belles of the ball at recent auto shows in Los Angeles and Tokyo, and researchers at the Energy Department's National Renewable Energy Laboratory (NREL) ...

Could alien life cope with a hotter, brighter star?

Mar 24, 2014

The stars in the night sky shine in myriad hues and brightnesses—piercing blues, clean whites, smoldering crimsons. Every star has a different mass, the basic characteristic that determines its size, lifespan, ...

Recommended for you

How do liquid foams block sound?

16 hours ago

Liquid foams have a remarkable property: they completely block the transmission of sound over a wide range of frequencies. CNRS physicists working in collaboration with teams from Paris Diderot and Rennes ...

When things get glassy, molecules go fractal

20 hours ago

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

Vacuum ultraviolet lamp of the future created in Japan

Apr 22, 2014

A team of researchers in Japan has developed a solid-state lamp that emits high-energy ultraviolet (UV) light at the shortest wavelengths ever recorded for such a device, from 140 to 220 nanometers. This ...

User comments : 0

More news stories

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

A 'quantum leap' in encryption technology

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.