Cloud formation affected by human activity, study says

Sep 12, 2006

University of Toronto researchers and their collaborators have discovered that solid ammonium sulphate aerosol – an airborne particle more prevalent in continental areas - can act as a catalyst to the formation of ice clouds, suggesting that cloud formation is another aspect of the global climate system that can be affected by human presence. The findings were published last week in Science.

With European climate scientists and cloud physicists, U of T atmospheric chemists Jon Abbatt and Zamin Kanji investigated whether ammonium sulphate aerosol in its crystal form could act as the ice nuclei to form cirrus clouds, the thin, wispy ice clouds that cover one quarter of the globe at any given time.

Cirrus clouds are important to the climate system because they scatter incoming sunlight, trap outgoing heat radiation and control the amount of water vapour in the upper troposphere. “Water vapour is a greenhouse gas, so any change in the ratio of ice cloud to water vapour affects the overall system,” says Abbatt. “So knowing how ice clouds form helps us better understand the system, and put together a better climate model.”

Studies of cirrus formation in different parts of the world have found that the clouds form more efficiently in the moderately polluted air of the Northern hemisphere than in the clean oceanic air of the Southern hemisphere. Abbatt’s team found a correlation between the amount of sulphate aerosol in the air and the efficiency of cloud formation in the regions. Because atmospheric ammonia now mainly comes from livestock and nitrogen-based fertilizer, the study provides evidence that human agricultural practices impact how and what kind of clouds form in the sky.

Source: University of Toronto

Explore further: Big snowstorms will still occur in Northern Hemisphere following global warming, study finds

add to favorites email to friend print save as pdf

Related Stories

Mars deep down

Aug 19, 2014

Scarring the southern highlands of Mars is one of the Solar System's largest impact basins: Hellas, with a diameter of 2300 km and a depth of over 7 km.

Research masters the misunderstood mixed-phase cloud

Aug 12, 2014

They are ice, they are rain—and sometimes in-between. Mixed-phase clouds, ubiquitous in the Arctic, are an enigma for scientists trying to understand their role in affecting the climate. In a study led ...

Rotation of planets influences habitability

Aug 08, 2014

There are currently almost 2,000 extrasolar planets known to us, but most are inhospitable gas giants. Thanks to NASA's Kepler mission, a handful of smaller, rockier planets have been discovered within the ...

Triangulum galaxy snapped by VST

Aug 06, 2014

The VLT Survey Telescope at ESO's Paranal Observatory in Chile has captured a beautifully detailed image of the galaxy Messier 33. This nearby spiral, the second closest large galaxy to our own galaxy, is ...

Recommended for you

User comments : 0