Container transport on a nano scale

Sep 06, 2006

Lock one or more molecules up within a cage of nanometer dimensions. Take this ‘nanocontainer’ to the desired spot and free the molecules. Or keep them locked up for a while and introduce other molecules into the container, for chemical reactions inside. By using polymers containing iron, it is possible to make intelligent containers of which the access of molecules can be regulated in a chemical way.

A research team led by prof Julius Vancso of the MESA+ Institute for Nanotechnology (The Netherlands) has succeeded in fabricating these nanocontainers. The scientists foresee exciting applications in e.g. medicine, in adding additives to food or in ultrafast reactions in nano chemistry. They present their results in the September issue of Nature Materials.

A true breakthrough in this research is the use of polymers having iron in their main chain. This is the material the containers are made of. By using iron, for the first time it is possible to adjust the permeability of the material via oxidation and reduction reactions. Scientist Mrs. Yujie Ma and Dr. Mark Hempenius, both of the group of Julius Vancso, succeeded in creating containers that can be opened and closed in this ‘chemical’ way. Oxidants or reductants take care of the access: een oxidant can be ironchloride, for example, a reductant could even be Vitamine C.

Chemical doormen

This selective access –one molecule gets in, the other won’t- is the result of the layered structure of the wall of the container. Polymer chains are layererd on top of each other and an electrostatic charge keeps them together. Influencing this charge with redox reactions, immediately influences the permeability of the wall. The container can contain a limited number of molecules, a soluble is already present inside.

As oxidation and reduction steps take part in numerous biochemical processes in water, the nanocontainers are useful for a variety of biological and biomedical applications. The scientists foresee applications in ‘green’ areas like food additives, medicine and cosmetics. In a more fundamental way, nanocontainers could be used in biochemistry to study large numbers of enzyme reactions at the same time and with high throughput.

The research, led by prof.dr. Julius Vancso of the MESA+ Institute for Nanotechnology of the University of Twente, has been done in close cooperation with the Group of prof. Helmuth Möhwald of the Max Planck Institut für Kolloid- und Grenzflachenforschung in Golm. The article ‘Redox-controlled molecular permeability of composite-wall microcapsules’ is published in the September issue of Nature Materials.

Source: University of Twente

Explore further: New type of barcode could make counterfeiters' lives more difficult

add to favorites email to friend print save as pdf

Related Stories

New study outlines 'water world' theory of life's origins

10 hours ago

(Phys.org) —Life took root more than four billion years ago on our nascent Earth, a wetter and harsher place than now, bathed in sizzling ultraviolet rays. What started out as simple cells ultimately transformed ...

Carbon nanotubes grow in combustion flames

Apr 01, 2014

Professor Stephan Irle of the Institute of Transformative Bio-Molecules (WPI-ITbM) at Nagoya University and co-workers at Kyoto University, Oak Ridge National Lab (ORNL), and Chinese research institutions ...

Recommended for you

Making 'bucky-balls' in spin-out's sights

5 hours ago

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

Polymer microparticles could help verify goods

Apr 13, 2014

Some 2 to 5 percent of all international trade involves counterfeit goods, according to a 2013 United Nations report. These illicit products—which include electronics, automotive and aircraft parts, pharmaceuticals, ...

New light on novel additive manufacturing approach

Apr 11, 2014

(Phys.org) —For nearly a century, electrophoretic deposition (EPD) has been used as a method of coating material by depositing particles of various substances onto the surfaces of various manufactured items. ...

User comments : 0

More news stories

Physicists create new nanoparticle for cancer therapy

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.