Container transport on a nano scale

Sep 06, 2006

Lock one or more molecules up within a cage of nanometer dimensions. Take this ‘nanocontainer’ to the desired spot and free the molecules. Or keep them locked up for a while and introduce other molecules into the container, for chemical reactions inside. By using polymers containing iron, it is possible to make intelligent containers of which the access of molecules can be regulated in a chemical way.

A research team led by prof Julius Vancso of the MESA+ Institute for Nanotechnology (The Netherlands) has succeeded in fabricating these nanocontainers. The scientists foresee exciting applications in e.g. medicine, in adding additives to food or in ultrafast reactions in nano chemistry. They present their results in the September issue of Nature Materials.

A true breakthrough in this research is the use of polymers having iron in their main chain. This is the material the containers are made of. By using iron, for the first time it is possible to adjust the permeability of the material via oxidation and reduction reactions. Scientist Mrs. Yujie Ma and Dr. Mark Hempenius, both of the group of Julius Vancso, succeeded in creating containers that can be opened and closed in this ‘chemical’ way. Oxidants or reductants take care of the access: een oxidant can be ironchloride, for example, a reductant could even be Vitamine C.

Chemical doormen

This selective access –one molecule gets in, the other won’t- is the result of the layered structure of the wall of the container. Polymer chains are layererd on top of each other and an electrostatic charge keeps them together. Influencing this charge with redox reactions, immediately influences the permeability of the wall. The container can contain a limited number of molecules, a soluble is already present inside.

As oxidation and reduction steps take part in numerous biochemical processes in water, the nanocontainers are useful for a variety of biological and biomedical applications. The scientists foresee applications in ‘green’ areas like food additives, medicine and cosmetics. In a more fundamental way, nanocontainers could be used in biochemistry to study large numbers of enzyme reactions at the same time and with high throughput.

The research, led by prof.dr. Julius Vancso of the MESA+ Institute for Nanotechnology of the University of Twente, has been done in close cooperation with the Group of prof. Helmuth Möhwald of the Max Planck Institut für Kolloid- und Grenzflachenforschung in Golm. The article ‘Redox-controlled molecular permeability of composite-wall microcapsules’ is published in the September issue of Nature Materials.

Source: University of Twente

Explore further: Tiny graphene drum could form future quantum memory

add to favorites email to friend print save as pdf

Related Stories

A salty, martian meteorite offers clues to habitability

10 hours ago

Life as we know it requires energy of some sort to survive and thrive. For plants, that source of energy is the Sun. But there are some microbes that can survive using energy from chemical reactions. Some ...

Catalytic gold nanoclusters promise rich chemical yields

Aug 25, 2014

(Phys.org) —Old thinking was that gold, while good for jewelry, was not of much use for chemists because it is relatively nonreactive. That changed a decade ago when scientists hit a rich vein of discoveries ...

How Titan's haze help us understand life's origins

Aug 25, 2014

Where did life on Earth come from? There are several theories as to what might have happened. Maybe comets came bearing organic material, or life was transported from another planet such as Mars, or something ...

Patent solution in a canning jar

Aug 12, 2014

From shopping bags to shampoo bottles to plastic watering cans – many everyday objects both large and small might look very different if it hadn't been for the invention of chemist and Max Planck researcher ...

Bioinspired catalyst splits water

Aug 08, 2014

Plants use photosynthesis to convert carbon dioxide and water into sugars and oxygen. The process starts in a cluster of manganese, calcium and oxygen atoms at the heart of a protein complex called photosystem ...

Recommended for you

Tiny graphene drum could form future quantum memory

5 hours ago

Scientists from TU Delft's Kavli Institute of Nanoscience have demonstrated that they can detect extremely small changes in position and forces on very small drums of graphene. Graphene drums have great potential ...

Graphene reinvents the future

Aug 27, 2014

For many scientists, the discovery of one-atom-thick sheets of graphene is hugely significant, something with the potential to affect just about every aspect of human activity and endeavour.

Catalytic gold nanoclusters promise rich chemical yields

Aug 25, 2014

(Phys.org) —Old thinking was that gold, while good for jewelry, was not of much use for chemists because it is relatively nonreactive. That changed a decade ago when scientists hit a rich vein of discoveries ...

User comments : 0