Solar cells go thin and flimsy

Sep 04, 2006
Mr Deceglie with the dye-sensitized test cells.
Mr Deceglie with the dye-sensitized test cells.

The next generation of solar cells made out of plastics and microscopic crystals instead of silicon are taking shape at UQ (University of Queensland). UQ Master of Physics student Michael Deceglie is working on improving the stability and overall efficiency of solar cells.

Mr Deceglie is testing two new ways of making solar cells out of dye-sensitized solar cell and a combined nanocrystal polymer solar cell.

The dye-sensitized cells use dye molecules to inject electrons into a thin titanium dioxide film while the polymer cell is a thin film of plastic mixed with microscopic crystals that channel the charge through the cell.

Mr Deceglie said both methods could produce solar cells that had similar efficiencies to current silicon technology but were cheaper more flexible, easier to produce and more environmentally friendly.

“Since electrons don't move well in the polymers, we incorporate nanocrystals with the polymer to provide a pathway along which electrons can move to generate electrical current,” Mr Deceglie said.

“The dye-sensitzed device works in a manner similar to phosynthesis in plants.”

Mr Decegile joined UQ's Soft Condensed Matter Physics Group in July as one of 14 Americans granted a Fulbright postgraduate award scholarship.

He will study under Group leader Dr Paul Meredith on the scholarship worth about $30,000 including his study and travel allowance.

“I chose to work with Paul's group because they were doing work that I found very interesting and Paul was very enthusiastic about having me,” the 22-year-old from Taringa said.

“By travelling to Australia on this Fulbright, I am hoping to highlight the importance of transnational cooperation to meeting our energy needs in a sustainable way.”

Fellow UQ physics PhD students Paul Schwenn and David Blake are also helping with the solar cell project.

Source: University of Queensland

Explore further: Synthesis of a new lean rare earth permanent magnetic compound superior to Nd2Fe14B

add to favorites email to friend print save as pdf

Related Stories

Blades of grass inspire advance in organic solar cells

Sep 30, 2014

Using a bio-mimicking analog of one of nature's most efficient light-harvesting structures, blades of grass, an international research team led by Alejandro Briseno of the University of Massachusetts Amherst ...

Recommended for you

Backpack physics: Smaller hikers carry heavier loads

14 hours ago

Hikers are generally advised that the weight of the packs they carry should correspond to their own size, with smaller individuals carrying lighter loads. Although petite backpackers might appreciate the ...

Extremely high-resolution magnetic resonance imaging

14 hours ago

For the first time, researchers have succeeded to detect a single hydrogen atom using magnetic resonance imaging, which signifies a huge increase in the technology's spatial resolution. In the future, single-atom ...

'Attosecond' science breakthrough

15 hours ago

Scientists from Queen's University Belfast have been involved in a groundbreaking discovery in the area of experimental physics that has implications for understanding how radiotherapy kills cancer cells, among other things.

User comments : 0