Re-inventing nature for cheaper solar power

Sep 01, 2006

A research team in Sydney has created molecules that mimic those in plants which harvest light and power life on Earth.

“A leaf is an amazingly cheap and efficient solar cell,” says Dr Deanna D’Alessandro, a postdoctoral researcher in the Molecular Electronics Group at the University of Sydney. “The best leaves can harvest 30 to 40 percent of the light falling on them. The best solar cells we can build are between 15 and 20 percent efficient, and expensive to make.”

“We’ve recreated some of the key systems that plants use in photosynthesis,” says Deanna.

Bacteria and green plants use photosynthesis to convert light energy into usable chemical energy. Wheel-shaped arrays of molecules called porphyrins collect light and transfer it to the hub where chemical reactions use the light energy to convert carbon dioxide into energy-rich sugar and oxygen.

“This process, which occurs in about 40 trillionths of a second is fundamental to photosynthesis and is at the base of the food chain for almost all life on Earth,” says Deanna.

“We have been able to construct synthetic porphyrins. More than 100 of them can be assembled around a tree-like core called a dendrimer to mimic the wheel-shaped arrangement in natural photosynthetic systems.”

These molecules designed by the team are about 1 billionth the size of a soccer ball. But the large number of porphyrins in a single molecule means that a significant amount of light can be captured and converted to electrical energy – just like in nature.

“Since they are so efficient at storing energy, we think they could also be used as batteries – replacing the metal-based batteries that our high technology devices depend on today,” Deanna says.

“Our preliminary results are very promising. We are still in the early stages of building practical solar energy devices using our molecules,” said Deanna. “The challenge is immense, but is crucial to providing alternative energy solutions for Australia and the world.”

Now they’ve made the molecules, the team along with their Japanese collaborators at Osaka University are working to combine them in the equivalent of a plant cell. Then, over the next five years they will attempt to scale up the technology to commercial scale solar panels.

Source: Science in Public

Explore further: Hydrogen sulfide nanoreporters gather intel on oil before pumping

add to favorites email to friend print save as pdf

Related Stories

The importance of plumes

Apr 18, 2014

The Hubble Space Telescope is famous for finding black holes. It can pick out thousands of galaxies in a patch of sky the size of a thumbprint. The most powerful space telescope ever built, the Hubble provided ...

New study outlines 'water world' theory of life's origins

Apr 16, 2014

(Phys.org) —Life took root more than four billion years ago on our nascent Earth, a wetter and harsher place than now, bathed in sizzling ultraviolet rays. What started out as simple cells ultimately transformed ...

Building better soybeans for a hot, dry, hungry world

Apr 16, 2014

(Phys.org) —A new study shows that soybean plants can be redesigned to increase crop yields while requiring less water and helping to offset greenhouse gas warming. The study is the first to demonstrate ...

Unlocking secrets of new solar material

Apr 16, 2014

(Phys.org) —A new solar material that has the same crystal structure as a mineral first found in the Ural Mountains in 1839 is shooting up the efficiency charts faster than almost anything researchers have ...

Recommended for you

Making graphene in your kitchen

18 hours ago

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

User comments : 0

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.