Laboratory sets high magnetic field records

Aug 31, 2006

Scientists at the National High Magnetic Field Laboratory's Pulsed Field Facility at Los Alamos National Laboratory have set a pair of world records for nondestructive pulsed-magnet performance that puts them in position to deliver a magnet capable of achieving 100 tesla, the longstanding goal of magnet designers and researchers around the globe.

A 100-tesla magnet could have a profound impact on a wide range of scientific investigations, from studies of how materials behave under the influence of very high magnetic fields to research into the microscopic behavior of phase transitions.

Earlier this month, Pulsed Field Facility staff completed commissioning of an outer set of coils for a massive magnet being designed and assembled at Los Alamos. During the commissioning, the coil produced a peak magnetic field intensity of 35 tesla within the coil's 225 millimeter-diameter bore. This achievement is significant because of the record large volume in which the 35-tesla field was produced, and because man-made fields of this strength have never before been produced without the use of highly destructive, explosives-driven, field-generating technologies.

This latest achievement comes on the heels of another record set earlier this summer in which the newly developed pulsed-magnet prototype, in evaluation at the Pulsed Field Facility, was put through a series of tests intended to establish the operational limits of the current generation of pulsed- magnet technology. That magnet reached 80 tesla 10 times before experiencing a fault.

"The ability to produce a record high field in such a large volume is an important milestone in delivering a magnet capable of 100 tesla," said Alex Lacerda, head of the Pulsed Field Facility. "Several other laboratories around the world have attempted to deliver similar magnet systems without success, so the achievement is further evidence of how engineers, scientists, and technicians at the National High Magnetic Field Laboratory continue to set the world standard for magnet technology. We look forward to giving our users routine access to pulsed fields that in the past could only be imagined."

Once completed, the entire magnet will be a combination of seven coil sets weighing nearly 18,000 pounds and powered by jolts from a massive 1,200 megajoules motor generator. When fully commissioned, the magnet will be able to provide hundreds of milliseconds levels of magnetic field intensity never before achieved.

The study of materials behavior at the extreme conditions of temperature, pressure, and magnetic fields is a vital component of Los Alamos research aimed at understanding of the physics of structurally complex systems at a quantum level. These recent successes were enabled by long-term support from the U.S. Department of Energy's Office of Basic Energy Sciences and the National Science Foundation's 100 Tesla Multi-Shot magnet program.

Source: Los Alamos National Laboratory

Explore further: Serial time-encoded amplified microscopy for ultrafast imaging based on multi-wavelength laser

add to favorites email to friend print save as pdf

Related Stories

How do we terraform Venus?

2 hours ago

It might be possible to terraform Venus some day, when our technology gets good enough. The challenges for Venus are totally different than for Mars. How will we need to fix Venus?

Fermi finds a 'transformer' pulsar

Jul 22, 2014

(Phys.org) —In late June 2013, an exceptional binary containing a rapidly spinning neutron star underwent a dramatic change in behavior never before observed. The pulsar's radio beacon vanished, while at ...

The birth of topological spintronics

Jul 23, 2014

The discovery of a new material combination that could lead to a more efficient approach to computer memory and logic will be described in the journal Nature on July 24, 2014. The research, led by Penn S ...

Bats use polarized light to navigate

Jul 22, 2014

Scientists have discovered that greater mouse-eared bats use polarisation patterns in the sky to navigate – the first mammal that's known to do this.

Recommended for you

Timely arrival of Pharao space clock

9 hours ago

ESA has welcomed the arrival of Pharao, an important part of ESA's atomic clock experiment that will be attached to the International Space Station in 2016.

First in-situ images of void collapse in explosives

Jul 25, 2014

While creating the first-ever images of explosives using an x-ray free electron laser in California, Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect ...

User comments : 0