Study shows new body armour can benefit from nanotechnology

Aug 29, 2006

Research at CCLRC Daresbury Laboratory has shown that incorporating nanoparticles into body armour can make it lighter, more flexible and more effective.

Current body armour relies on a stiff and relatively heavy layer of ceramic material to absorb ballistic impact. This makes body armour heavy and unwieldy. The Daresbury team, together with researchers from Tuskegee and Florida Atlantic universities in the USA, are evaluating new nanocomposite materials which can be woven into fabrics to provide greater flexibility as well as better ballistic protection. They have found that incorporating spherical nanoparticles of silicon or titanium dioxide or carbon nanotubes in a plastic or epoxy matrix offers improved ballistic resistance together with greatly improved flexibility.

Daresbury Laboratory’s role has been to investigate ways to make the new materials as strong as possible. The manufacturing process used to make the new body armour can introduce impurities which limit the amount of nanoparticles that can be incorporated and so reduce its effectiveness.

Dr Vin Dhanak said, “We’re using the synchrotron light source, or SRS, and the photoelectron spectrometer at the National Centre for electron spectroscopy and surface analysis, both based at Daresbury. These world-leading instruments let us analyse how the nanoparticles bond with the matrix materials in which they’re embedded. This will help improve the manufacturing process to eliminate impurities and make the materials stronger.”

Source: Council for the Central Laboratory of the Research Councils

Explore further: How we can substitute critical raw materials in catalysis, electronics and photonics

add to favorites email to friend print save as pdf

Related Stories

Adhesives and insulating foams from softwood bark tannins

17 minutes ago

In collaboration with its partners, VTT developed tannin extraction from softwood bark as part of an ERA-NET project. At least 130 kg of crude tannin powder can be produced from one tonne of dry wood bark, still leaving 87% ...

We're all mammals – so why do we look so different?

28 minutes ago

It is easy to distinguish a mouse from a cow. But for members of the same class of mammal, where do such differences begin? In 2011, scientists discovered there were differences in cow and mice blastocysts, the ti ...

Recycling of nutrients is the key to saving the Earth

29 minutes ago

Leakages of nutrients necessary for food production – especially nitrogen and phosphorus – cause severe eutrophication to the Earth's aquatic ecosystems and promote climate change. However, this threat also hides an opportunity. ...

Recommended for you

Semiconductor miniaturisation with 2D nanolattices

Feb 26, 2015

A European research project has made an important step towards the further miniaturisation of nanoelectronics, using a highly-promising new material called silicene. Its goal: to make devices of the future ...

Magnetic nanoparticles enhance performance of solar cells

Feb 25, 2015

Magnetic nanoparticles can increase the performance of solar cells made from polymers - provided the mix is right. This is the result of an X-ray study at DESY's synchrotron radiation source PETRA III. Adding ...

Researchers enable solar cells to use more sunlight

Feb 25, 2015

Scientists of the University of Luxembourg and of the Japanese electronics company TDK report progress in photovoltaic research: they have improved a component that will enable solar cells to use more energy of the sun and ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.