Laser light in the deep infrared

Aug 23, 2006
One of the undulators at the FZR
One of the undulators at the FZR.

Free-electron lasers (FEL) are large and expensive, but they can deliver unique light for research and applications. On August 21, 2006, at the Forschungszentrum Rossendorf (FZR) in Dresden, Germany, the second undulator of the free-electron laser facility went into operation, producing light up to the hard-to-access range of the deep “far” infrared.

An undulator is the heart of a free-electron laser, because it transforms the energy of fast electrons into intense laser light through a special arrangement of magnets.

The Dresden FEL now covers the wavelength range, invisible to humans, from 3 to 150 micrometers. The asset of every free-electron laser is its tunability, i.e., the wavelength or the “color” of the light can be adjusted at will over a large range.

Scientists at FZR have a particular interest in this far-infrared light, which is located between the ranges of microwaves and the infrared and is often called Terahertz (THz) radiation. The generation and application of this radiation has become a very hot topic recently, with many researchers worldwide active in this field. While many practical applications will eventually require compact and cheap sources, basic research needs also intense sources - and to date there are virtually no other intense THz sources available apart from free-electron lasers.

At FZR, THz radiation is used in particular to study the dynamical behavior of electrons in semiconductor nanostructures. Such knowledge is important for the development of ever faster electronic devices, and thus, computers. The FEL at the Forschungszentrum Rossendorf is supported by the European Union (EU) as a user facility under the name FELBE.

200 experts from all over the world will have the chance to visit the new light source at FZR on August 30. They are participants of the FEL2006 Conference, taking place in Berlin from August 27 to September 1. This 28th international FEL conference is jointly organized by BESSY, the organization who runs the well-known synchrotron source south of Berlin, and FZR.

Source: Forschungszentrum Rossendorf

Explore further: The secret of dragonflies' flight

add to favorites email to friend print save as pdf

Related Stories

Form Devices team designs Point as a house sitter

23 hours ago

A Scandinavian team "with an international outlook" and good eye for electronics, software and design aims to reach success with what they characterize as "a softer take" on home security. Their device is ...

Man pleads guilty in New York cybercrime case

Nov 22, 2014

A California man has pleaded guilty in New York City for his role marketing malware that federal authorities say infected more than a half-million computers worldwide.

Recommended for you

Tiny magnetic sensor deemed attractive

10 hours ago

Ultra-sensitive magnetic sensor technology pioneered at PML may soon be commercialized for a host of applications from detection of unexploded bombs and underground pipes to geophysical surveying and perhaps ...

Beams come knocking on the LHC's door

10 hours ago

Over the weekend, proton beams came knocking on the Large Hadron Collider's (LHC) door. Shooting from the Super Proton Synchrotron (SPS) and into the two LHC injection lines, the proton beams were stopped ...

Climate control in termite mounds

12 hours ago

When they make their way into homes, some species of termites can be destructive pests. Their fungus-harvesting relatives in Africa and Asia, however, are known for their construction prowess, collectively ...

The secret of dragonflies' flight

12 hours ago

Dragonflies can easily right themselves and maneuver tight turns while flying. Each of their four wings is controlled by separate muscles, giving them exquisite control over their flight.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.