Satellites Will Improve Understanding of the Sun

Aug 17, 2006
The twin STEREO spacecraft
The twin STEREO spacecraft will provide 3-D images of the immense solar explosions called coronal mass ejections. These explosions hurl charged electrons and ions at Earth, disrupting communications, threatening satellites and endangering astronauts. (NASA illustration)

NASA's Solar Terrestrial Relations Observatory mission will dramatically improve understanding of the powerful solar eruptions that can send more than a billion tons of the sun's outer atmosphere hurtling into space.

The STEREO mission comprises two nearly identical spacecraft the size of golf carts, which are scheduled to launch on Aug. 31 aboard a Delta II rocket from Cape Canaveral Air Force Station, Fla. Their observations will enable scientists to construct the first-ever three-dimensional views of the sun. These images will show the sun's stormy environment and its effect on the inner solar system. The data are vital for understanding how the sun creates space weather.

During the two-year mission, the two spacecraft will explore the origin, evolution and interplanetary consequences of coronal mass ejections, some of the most violent explosions in our solar system. When directed at Earth, these billion-ton eruptions can produce spectacular aurora and disrupt satellites, radio communications and power systems. Energetic particles associated with these solar eruptions permeate the entire solar system and may be hazardous to spacecraft and astronauts.

"In terms of space-weather forecasting, we're where weather forecasters were in the 1950s," said Michael Kaiser, STEREO project scientist at NASA's Goddard Space Flight Center in Greenbelt, Md. "They didn't see hurricanes until the rain clouds were right above them. In our case, we can see storms leaving the sun, but we have to make guesses and use models to figure out if and when they will impact Earth."

To obtain their unique stereo view of the sun, the two observatories must be placed in different orbits, where they are offset from each other and Earth. Spacecraft "A" will be in an orbit moving ahead of Earth, and "B" will lag behind, as the planet orbits the sun.

Just as the slight offset between eyes provides depth perception, this placement will allow the STEREO observatories to obtain 3-D images of the sun. The arrangement also allows the spacecraft to take local particle and magnetic field measurements of the solar wind as it flows by the spacecraft.

STEREO is the first NASA mission to use separate lunar swingbys to place two observatories into vastly different orbits around the sun. The observatories will fly in an orbit from a point close to Earth to one that extends just beyond the moon.

Approximately two months after launch, mission operations personnel at the Johns Hopkins University Applied Physics Laboratory, Laurel, Md., will use a close flyby of the moon to modify the orbits. The moon's gravity will be used to direct one observatory to its position trailing Earth. Approximately one month later, the second observatory will be redirected after another lunar swingby to its position ahead of Earth. These maneuvers will enable the spacecraft to take permanent orbits around the sun.

Each STEREO observatory has 16 instruments. The observatories have imaging telescopes and equipment to measure solar wind particles and to perform radio astronomy.

"STEREO is charting new territory for science research and the building of spacecraft. The simultaneous assembly, integration and launch of nearly identical observatories have been an extraordinary challenge," said Nick Chrissotimos, STEREO project manager at Goddard.

The STEREO mission is managed by Goddard. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results.

For more information about STEREO, visit: www.nasa.gov/stereo

Source: NASA

Explore further: SDO captures images of two mid-level flares

add to favorites email to friend print save as pdf

Related Stories

NASA sun probe silent now for six weeks

Nov 12, 2014

No one knows exactly why a NASA solar probe stopped talking to Earth six weeks ago, but it's possible the spacecraft is out of power and is drifting without a way of calling for help, the agency said in an ...

ESA image: Chaos in Atlantis basin

Oct 28, 2014

Mars is peppered with craters. Scientists have deduced that the red planet is struck by around 200 meteoroids every year that dig out new craters.

NASA creating a virtual telescope with two small spacecraft

Oct 24, 2014

Although scientists have flown two spacecraft in formation, no one ever has aligned the spacecraft with a specific astronomical target and then held that configuration to make a scientific observation—creating, ...

Scientific instruments of Rosetta's Philae lander

Sep 23, 2014

When traveling to far off lands, one packs carefully. What you carry must be comprehensive but not so much that it is a burden. And once you arrive, you must be prepared to do something extraordinary to make ...

Recommended for you

SDO captures images of two mid-level flares

2 hours ago

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

9 hours ago

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

12 hours ago

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

12 hours ago

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

Spinning up a dust devil on Mars

13 hours ago

Spinning up a dust devil in the thin air of Mars requires a stronger updraft than is needed to create a similar vortex on Earth, according to research at The University of Alabama in Huntsville (UAH).

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.