Nanotube Coating Meshes with Living Cells

Aug 14, 2006

Using a polymer coating that mimics part of a cell’s outer membrane, a team of investigators at the University of California, Berkeley, have developed a versatile method for targeting carbon nanotubes to specific types of cells. This new coating could spur the development of new anticancer agents that rely on the unique physical characteristics of carbon nanotubes.

Carolyn Bertozzi, Ph.D., and her colleagues created sugar-based polymers, or glycopolymers, that mimic those found on the outside of cells. Cells use different glycopolymers as identifiers that tell other cells what their function is in the body

Reporting their work in the Journal of the American Chemical Society, the researchers demonstrated that they could attach this coating to carbon nanotubes to form a stable cell-like surface on the nanotubes. The researchers then used a protein produced by a particular type of snail, one that binds to the exact sugar used to make the nanotube coating, to act as a crosslinker between the coated nanotubes and cells possessing the exact same glycopolymer on their outer membranes. The researchers note that by using different glycoprotein-crosslinking protein pairs it should be possible to target distinct types of cells based on their membrane glycoprotein fingerprint.

To test whether these coated nanotubes might be toxic to cells, the investigators mixed the coated nanotubes with two different types of cells growing in culture. The researchers found that the coated nanotubes had no effect on the growth of these cells. In contrast, uncoated nanotubes inhibited significantly the growth of both types of cells.

This work is detailed in a paper titled, “Interfacing Carbon Nanotubes with Living Cells.” Investigators from the Lawrence Berkeley National Laboratory also participated in this study. This paper was published online in advance of print publication. An abstract is available at the journal’s website.

Source: National Cancer Institute

Explore further: Innovative strategy to facilitate organ repair

add to favorites email to friend print save as pdf

Related Stories

Maximising solar cells

Jan 22, 2014

(Phys.org) —With silicon solar cells set to become a thing of the past, a Flinders University researcher has developed a novel computer system to find the best emerging carbon nanotubes to fuel the future.

Carbon nanotubes promise improved flame-resistant coating

Jan 15, 2014

Using an approach akin to assembling a club sandwich at the nanoscale, National Institute of Standards and Technology (NIST) researchers have succeeded in crafting a uniform, multi-walled carbon-nanotube-based ...

Recommended for you

Innovative strategy to facilitate organ repair

Apr 18, 2014

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

Physicists create new nanoparticle for cancer therapy

Apr 16, 2014

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

User comments : 0

More news stories

'Exotic' material is like a switch when super thin

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...