New method of growing carbon nanotubes to revolutionise electronics

Aug 09, 2006

A new method of growing carbon nanotubes is predicted to revolutionise the implementation of nanotechnology and the future of electronics. Researchers at the University of Cambridge have successfully grown nanotubes at a temperature which permits their full integration into present complementary metal-oxide semiconductor (CMOS) technology (350 ºC).

Carbon nanotubes are the driving force for current advances in nanotechnology; they have excellent mechanical and electronic properties, the latter making them extremely attractive for new-generation electronics.

Increasing efficiency through smaller components is the key towards miniaturisation of technology. The use of carbon nanotubes could find successful use from sophisticated, niche applications to everyday electronics (mobile phones, computers).

Thus far the growth of nanotubes has been carried out at very high temperatures, and growth below 500 °C was believed impossible. This made the direct implementation of nanotubes into electronic devices unthinkable. Trying to integrate nanotubes above 400–450 °C would in fact damage the inter-metal dielectrics commonly employed in CMOS device fabrication.

A group of researchers at the Department of Engineering at the University of Cambridge, led by Mirco Cantoro, Stephan Hofmann, Andrea Ferrari and John Robertson, in collaboration with colleagues at the Cambridge Hitachi Laboratory and the Department of Materials Science, University of Cambridge, succeeded in growing single-wall carbon nanotubes at temperatures as low as 350 ºC.

These nanotubes, grown by thermal Chemical Vapour Deposition (a chemical process often used in the semiconductor industry), are promising candidates for integration into existing nanoelectronic devices.

This result also sheds new light on the possible mechanisms that occur during carbon nanotube growth. Previously, the assumption that the catalyst has to be liquid often dominated carbon nanotube growth model considerations, but at these lower temperatures evidence has been found of a solid catalyst. These findings extend to the catalytic growth of other nanostructures in general.

This work has been recently published in Nano Letters. M. Cantoro et al. “Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures”, Nano Letters 6, 1107 (2006).

Source: University of Cambridge

Explore further: The latest fashion: Graphene edges can be tailor-made

add to favorites email to friend print save as pdf

Related Stories

Researchers take first pictures of baby nanotubes

Dec 02, 2014

Single-walled carbon nanotubes are loaded with desirable properties. In particular, the ability to conduct electricity at high rates of speed makes them attractive for use as nanoscale transistors. But this ...

Vine-tree-like CNT architectures

Nov 03, 2014

The vine-tree structure is widely observed in nature when the plant has a growth habit of trailing or climbing stems. The vines use trees for growth rather than devoting energy to development of supportive ...

Recommended for you

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

The importance of building small things

Jan 22, 2015

Strong materials, such as concrete, are usually heavy, and lightweight materials, such as rubber (for latex gloves) and paper, are usually weak and susceptible to tearing and damage. Julia R. Greer, professor ...

Graphene brings quantum effects to electronic circuits

Jan 22, 2015

Research by scientists attached to the EC's Graphene Flagship has revealed a superfluid phase in ultra-low temperature 2D materials, creating the potential for electronic devices which dissipate very little ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.