Technique used commonly in physics finds application in neuroscience

Aug 03, 2006

To understand how brain cells release compounds (or transmitters) used when the cells communicate with each other, Vladimir Parpura, associate professor of neuroscience, and Umar Mohideen, professor of physics, devised a new technique, used commonly in physics, that can be applied now to the study of a wide range of biological processes and interactions.

The researchers, who performed their experiments on brain proteins called SNAREs, published their results in the July issue of Biophysical Journal.

The technique, commonly referred to as Atomic Force Microscopy, uses the deflection of microfabricated membranes of silicon nitride, about 100 times thinner than the human hair, to measure very small forces. Using this technique on rat brain proteins, the researchers were able to measure the bonding between single protein molecules that are involved in the release of the neurotransmitters. They also were able to classify the strength of the molecular interactions (bonding) between 3 of the SNARE proteins that participate in the process.

SNARE proteins are located on vesicles (tiny membrane-encased packets that contain neurotransmitters or enzymes) and the plasma membrane of brain cells. These proteins are thought to play a key role in the final fusion of the synaptic vesicle with the plasma membrane, a process that makes communication between cells possible.

"Our results shed new light on how these proteins are involved in exocytosis - the process by which a biological cell releases substances into its environment," Parpura said. "We now understand better how these proteins interact at the molecular level and we can apply this to improve our detection of toxins acting on these proteins."

The researchers used the technique also to develop a sensor for detecting botulinum toxin, responsible for an often fatal type of food poisoning.

"Our sensor is extremely sensitive because it is capable of detecting interactions between two single molecules," Mohideen said. "As a result, the sample size you need for testing can be extremely small, of the order of a few molecules."

Source: University of California, Riverside

Explore further: Hide and seek: Sterile neutrinos remain elusive

add to favorites email to friend print save as pdf

Related Stories

Final pieces to the circadian clock puzzle found

Sep 14, 2014

Researchers at the UNC School of Medicine have discovered how two genes – Period and Cryptochrome – keep the circadian clocks in all human cells in time and in proper rhythm with the 24-hour day, as well ...

3-D microscope method to look inside brains

Aug 14, 2014

(Phys.org) —A University of Utah team discovered a method for turning a small, $40 needle into a 3-D microscope capable of taking images up to 70 times smaller than the width of a human hair. This new method ...

Recommended for you

Hide and seek: Sterile neutrinos remain elusive

13 hours ago

The Daya Bay Collaboration, an international group of scientists studying the subtle transformations of subatomic particles called neutrinos, is publishing its first results on the search for a so-called ...

Novel approach to magnetic measurements atom-by-atom

17 hours ago

Having the possibility to measure magnetic properties of materials at atomic precision is one of the important goals of today's experimental physics. Such measurement technique would give engineers and physicists an ultimate ...

Scientists demonstrate Stokes drift principle

20 hours ago

In nature, waves – such as those in the ocean – begin as local oscillations in the water that spread out, ripple fashion, from their point of origin. But fans of Star Trek will recall a different sort of wave pattern: ...

User comments : 0