Cool solution to waste disposal

Jul 31, 2006

As the Committee on Radioactive Waste Management (CoRWM) prepares to issue advice to government on nuclear waste, a group of physicists claims to have discovered a technique that could make nuclear waste much easier to deal with. The new technique, reported in the August edition of Physics World, would render nuclear waste harmless on timescales of just a few tens of years, instead of thousands.

Professor Claus Rolfs, leader of the group at Ruhr University in Bochum, Germany, said “The method we are proposing means that nuclear waste could probably be dealt with entirely within the lifetimes of the people that produce it. We would not have to put it underground and let our great-great-grandchildren pay the price for our high standard of living.”

The technique involves embedding the nuclear waste in a metal and cooling it to ultra-low temperatures. This speeds up the rate of decay of the radioactive materials potentially cutting their half lives by a factor of 100 or more.

Professor Rolfs added “We are currently investigating radium-226, a hazardous component of spent nuclear fuel with a half-life of 1600 years. I calculate that using this technique could reduce the half-life to 100 years. At best, I have calculated that it could be reduced to as little as two years. This would avoid the need to bury nuclear waste in deep repositories - a hugely expensive and difficult process.”

Rolfs developed the technique after trying to recreate experimentally the way in which atomic nuclei react in the centre of stars. Whilst using a particle collider to carry out his studies, he noticed that more nuclear fusion reactions happened in the collider if the atomic nuclei were encased in metal and cooled. Fusion involves light nuclei coalescing to form heavier nuclei, releasing energy in the process. Radioactive decay is the opposite: a particle is released from a nucleus. Rolfs believes that if cooling nuclei in metal enhances fusion, it could enhance the opposite reaction, namely speeding up the rate at which radioactive particles decay.

According to Rolfs, the lower temperature of the metal means that free electrons can get closer to the radioactive nuclei. These electrons accelerate positively charged particles towards the nuclei, thereby increasing the probability of fusion reactions, or in the opposite case, accelerate particles that are being ejected from the nucleus.

“We are working on testing the hypothesis with a number of radioactive nuclei at the moment and early results are promising”, he said. “It is early days, and much engineering research will need to be done to put this idea into practise, but I don’t think there will be any insurmountable technical barriers.”

Source: Institute of Physics

Explore further: Sensitive detection method may help impede illicit nuclear trafficking

add to favorites email to friend print save as pdf

Related Stories

Magnetic behavior discovery could advance nuclear fusion

Mar 19, 2014

(Phys.org) —Inspired by the space physics behind solar flares and the aurora, a team of researchers from the University of Michigan and Princeton has uncovered a new kind of magnetic behavior that could ...

Understanding the turbulence in plasmas

Apr 29, 2013

A longstanding joke holds that practical fusion power is about 20 years away—and always will be. One simple phenomenon explains why practical, self-sustaining fusion reactions have proved difficult to achieve: Turbulence ...

Recommended for you

Device turns flat surface into spherical antenna

Apr 14, 2014

By depositing an array of tiny, metallic, U-shaped structures onto a dielectric material, a team of researchers in China has created a new artificial surface that can bend and focus electromagnetic waves ...

User comments : 0

More news stories

CERN: World-record current in a superconductor

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

Glasses strong as steel: A fast way to find the best

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...