Research paves way for new composite materials

Jul 19, 2006

Northwestern University researchers have developed a process that promises to lead to the creation of a new class of composite materials -- "graphene-based materials."

The method uses graphite to produce individual graphene-based sheets with exceptional physical, chemical and barrier properties that could be mixed into materials such as polymers, glasses and ceramics.

The Northwestern team, led by materials scientist and physical chemist Rod Ruoff and composed of chemists, physicists and engineers, reports the results of their research in the July 20 issue of the journal Nature.

"This research provides a basis for developing a new class of composite materials for many applications, through tuning of their electrical and thermal conductivity, their mechanical stiffness, toughness and strength, and their permeability to flow various gases through them," said Ruoff, professor of mechanical engineering in the McCormick School of Engineering and Applied Science. "We believe that manipulating the chemical and physical properties of individual graphene-based sheets and effectively mixing them into other materials will lead to discoveries of new materials in the future."

The Northwestern team's approach to its challenge was based on chemically treating and thereby "exfoliating" graphite to individual layers. Graphite is a layered material of carbon with strong chemical bonds in the layers but with moderately weak bonds between the layers. The properties of the individual layers have been expected to be exceptional because the "in-plane" properties of graphite itself are exceptional, but until now it was not possible to extract such individual layers and to embed them as a filler material in materials such as polymers, and particularly not by a scalable route that could afford large quantities.

There are approximately one million metric tons of graphite sold annually around the world, and there are roughly 800 million metric tons of untapped natural graphite that could be mined and used in the future, according to the U.S. Geological Survey. Graphite is used in a wide variety of applications such as those related to friction (brake linings are one example), in gaskets, as a lubricant, and as an electrode material in the making of steel.

Source: Northwestern University

Explore further: Physicists advance understanding of transition metal oxides used in electronics

add to favorites email to friend print save as pdf

Related Stories

Smart anti-icing system for rotor blades

Dec 01, 2014

In very cold climate zones, the wind can blow with tremendous force. But wind turbines have rarely been built in these regions up to now. The risk of ice formation on the rotor blades is just too high. But ...

'Mind the gap' between atomically thin materials

Nov 23, 2014

In subway stations around London, the warning to "Mind the Gap" helps commuters keep from stepping into empty space as they leave the train. When it comes to engineering single-layer atomic structures, minding ...

Recommended for you

Yellowstone's thermal springs—their colors unveiled

30 minutes ago

Researchers at Montana State University and Brandenburg University of Applied Sciences in Germany have created a simple mathematical model based on optical measurements that explains the stunning colors of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.