Landscapes from the ancient and eroded lunar far side

Jul 14, 2006
Landscapes from the ancient and eroded lunar far side
This image, taken by the advanced Moon Imaging Experiment (AMIE) on board ESA's SMART-1 spacecraft, shows a highly eroded highland area close to the equator on the lunar far side -- the side of the Moon always facing away from Earth. AMIE obtained this image on 1 January 2006, from a distance of 1483 kilometres from the surface, with a ground resolution of 134 metres per pixel. The imaged area is centred at a latitude of 4.2º South and longitude 98.4º East. This image shows some highly eroded highland areas. Many craters are almost not longer visible, as they were destroyed by subsequent impacts. Credit: ESA/SMART-1/Space-X (Space Exploration Institute)

This image, taken by the advanced Moon Imaging Experiment (AMIE) on board ESA's SMART-1 spacecraft, shows a highly eroded highland area on the lunar far side, close to the equator.

AMIE obtained this image on 1 January 2006, from a distance of 1483 kilometres from the surface, with a ground resolution of 134 metres per pixel. The imaged area is centred at a latitude of 4.2º South and longitude 98.4º East. The Moon's rotation is locked to the Earth, that is the Moon always presents roughly the same side to the Earth. We call the side facing the Earth the 'near side', while the side facing away is the 'far side'.

After the first lunar missions orbited the Moon, it was discovered that unlike the near side, the far side is lacking large lava plains, the so-called 'maria'. The far side is mainly composed of heavily cratered highlands, while only very small areas contain smooth lava plains.

The reason for this difference between near side and far side is not exactly understood. Could the tidal pull of the Earth on the Moon - just like the Moon introduces tides on the water bodies of the Earth - have resulted in such a difference?

The modelling of previous topography and gravity measurements indicate that the solid crust is thinner on the near side. As a consequence, large impacts could excavate the crust more easily on the near side, and so lava had an easier way to flow out and create maria formations.

This image shows some highly eroded highland area on the lunar far side. Many craters are almost not longer visible, as they were destroyed by subsequent impacts.

Source: ESA

Explore further: Stellar astronomers answer question posed by citizen scientists: 'What are yellowballs?'

add to favorites email to friend print save as pdf

Related Stories

What other worlds have we landed on?

Jan 14, 2015

Think of all the different horizons humans have viewed on other worlds. The dust-filled skies of Mars. The Moon's inky darkness. Titan's orange haze. These are just a small subset of the worlds that humans ...

NOAA's DSCOVR to provide 'EPIC' views of Earth

Jan 07, 2015

NASA has contributed two Earth science instruments for NOAA's space weather observing satellite called the Deep Space Climate Observatory or DSCOVR, set to launch in January 2015. One of the instruments called ...

How did we find the distance to the sun?

Jan 05, 2015

How far is the Sun? It seems as if one could hardly ask a more straightforward question. Yet this very inquiry bedeviled astronomers for more than two thousand years.

Recommended for you

Black hole chokes on a swallowed star

Jan 26, 2015

A five-year analysis of an event captured by a tiny telescope at McDonald Observatory and followed up by telescopes on the ground and in space has led astronomers to believe they witnessed a giant black hole ...

Swarm of microprobes to head for Jupiter

Jan 26, 2015

A swarm of tiny probes each with a different sensor could be fired into the clouds of Jupiter and grab data as they fall before burning up in the gas giant planet's atmosphere. The probes would last an estimated ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.